論文の概要: Calibrated Bayesian Deep Learning for Explainable Decision Support Systems Based on Medical Imaging
- arxiv url: http://arxiv.org/abs/2602.11973v1
- Date: Thu, 12 Feb 2026 14:03:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-13 21:07:25.860055
- Title: Calibrated Bayesian Deep Learning for Explainable Decision Support Systems Based on Medical Imaging
- Title(参考訳): 医用画像に基づく説明可能な意思決定支援システムのための校正ベイズディープラーニング
- Authors: Hua Xu, Julián D. Arias-Londoño, Juan I. Godino-Llorente,
- Abstract要約: モデルが予測精度と相関する方法で不確実性を定量化し、臨床医がさらなるレビューのために信頼できないアウトプットを特定できることが不可欠である。
本稿では,ベイズ深層学習に基づく一般化可能な確率的最適化フレームワークを提案する。
特に、信頼性・不確実性境界損失(CUB-Loss)が新しく導入され、高い精度の誤差と低い精度の正確な予測に罰則が課せられる。
提案手法は, 肺炎の自動スクリーニング, 糖尿病性網膜症検出, 皮膚病変の同定という, 3つの異なる医用画像処理課題に対して検証された。
- 参考スコア(独自算出の注目度): 6.826979426009301
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In critical decision support systems based on medical imaging, the reliability of AI-assisted decision-making is as relevant as predictive accuracy. Although deep learning models have demonstrated significant accuracy, they frequently suffer from miscalibration, manifested as overconfidence in erroneous predictions. To facilitate clinical acceptance, it is imperative that models quantify uncertainty in a manner that correlates with prediction correctness, allowing clinicians to identify unreliable outputs for further review. In order to address this necessity, the present paper proposes a generalizable probabilistic optimization framework grounded in Bayesian deep learning. Specifically, a novel Confidence-Uncertainty Boundary Loss (CUB-Loss) is introduced that imposes penalties on high-certainty errors and low-certainty correct predictions, explicitly enforcing alignment between prediction correctness and uncertainty estimates. Complementing this training-time optimization, a Dual Temperature Scaling (DTS) strategy is devised for post-hoc calibration, further refining the posterior distribution to improve intuitive explainability. The proposed framework is validated on three distinct medical imaging tasks: automatic screening of pneumonia, diabetic retinopathy detection, and identification of skin lesions. Empirical results demonstrate that the proposed approach achieves consistent calibration improvements across diverse modalities, maintains robust performance in data-scarce scenarios, and remains effective on severely imbalanced datasets, underscoring its potential for real clinical deployment.
- Abstract(参考訳): 医療画像に基づく批判的意思決定支援システムでは、AIによる意思決定の信頼性は予測精度と同じくらいに関係している。
深層学習モデルはかなりの精度を示してきたが、しばしば誤校正に悩まされ、誤った予測の過度な自信として表される。
臨床受け入れを容易にするために、予測精度と相関する方法で不確実性を定量化し、臨床医がさらなるレビューのために信頼できないアウトプットを特定できることが不可欠である。
そこで本研究では,ベイズ深層学習に基づく一般化可能な確率的最適化手法を提案する。
具体的には、信頼性・不確実性境界損失(CUB-Loss)を導入し、高い確実性エラーと低確実性予測に罰則を課し、予測正しさと不確実性推定との整合性を明示的に強制する。
このトレーニング時間最適化を補完し、双極子温度スケーリング(DTS)戦略をポストホックキャリブレーションのために考案し、さらに後部分布を改良して直感的な説明性を向上させる。
提案手法は, 肺炎の自動スクリーニング, 糖尿病性網膜症検出, 皮膚病変の同定という, 3つの異なる医用画像処理課題に対して検証された。
実験の結果,提案手法は多種多様なモダリティに対して一貫した校正精度の向上を実現し,データスカースシナリオにおける堅牢な性能を維持し,高度に不均衡なデータセットに対して有効であり,実際の臨床展開の可能性を強調している。
関連論文リスト
- Enhancing Safety in Diabetic Retinopathy Detection: Uncertainty-Aware Deep Learning Models with Rejection Capabilities [0.0]
糖尿病網膜症(DR)は視覚障害の主要な原因である。
深層学習モデルは網膜画像からDRを特定することに成功している。
本稿では,不確実性を考慮したディープラーニングモデルにおいて,低信頼度予測を拒否する拒否機構を含む代替手法について検討する。
論文 参考訳(メタデータ) (2025-09-26T01:47:43Z) - Hesitation is defeat? Connecting Linguistic and Predictive Uncertainty [2.8186733524862158]
本稿では,ルールベースのラベルラによってラベル付けされた自由テキストレポートから推定される予測不確実性と人・言語不確実性との関係について検討する。
その結果,予測的不確実性と言語的不確実性との間には緩やかな相関関係がみられ,機械の不確実性と人間の解釈を整合させる上での課題が浮き彫りにされた。
論文 参考訳(メタデータ) (2025-05-06T18:34:37Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
一度展開すると、医用画像解析法は予期せぬ画像の破損やノイズの摂動に直面することが多い。
LaDiNEは、視覚変換器のロバスト性と拡散に基づく生成モデルを組み合わせた、新しいアンサンブル学習手法である。
結核胸部X線とメラノーマ皮膚がんデータセットの実験により、LaDiNEは幅広い最先端の方法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-10-24T15:53:07Z) - Towards Reliable Medical Image Segmentation by Modeling Evidential Calibrated Uncertainty [57.023423137202485]
医用画像のセグメンテーションの信頼性に関する懸念が臨床医の間で続いている。
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を活用することで、医用画像分割の確率と不確実性を明示的にモデル化する。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。