論文の概要: IntrusionX: A Hybrid Convolutional-LSTM Deep Learning Framework with Squirrel Search Optimization for Network Intrusion Detection
- arxiv url: http://arxiv.org/abs/2510.00572v2
- Date: Fri, 03 Oct 2025 17:20:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-06 14:21:29.912603
- Title: IntrusionX: A Hybrid Convolutional-LSTM Deep Learning Framework with Squirrel Search Optimization for Network Intrusion Detection
- Title(参考訳): IntrusionX: ネットワーク侵入検出のためのリス探索最適化を用いたハイブリッド畳み込み-LSTMディープラーニングフレームワーク
- Authors: Ahsan Farabi, Muhaiminul Rashid Shad, Israt Khandaker,
- Abstract要約: 侵入検知システム(IDS)は、NSL-KDDのようなベンチマークデータセットにおいて、サイバー攻撃の進化、高次元トラフィックデータ、厳しいクラス不均衡により、永続的な課題に直面している。
IntrusionXは,局所的特徴抽出のための畳み込みニューラルネットワーク(CNN)と時間的モデリングのためのLong Short-Term Memory(LSTM)ネットワークを統合したハイブリッドディープラーニングフレームワークである。
パイプラインには厳密な前処理,階層化データ分割,動的クラス重み付けが組み込まれ,レアクラスの検出が促進される。
- 参考スコア(独自算出の注目度): 0.4549831511476248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion Detection Systems (IDS) face persistent challenges due to evolving cyberattacks, high-dimensional traffic data, and severe class imbalance in benchmark datasets such as NSL-KDD. To address these issues, we propose IntrusionX, a hybrid deep learning framework that integrates Convolutional Neural Networks (CNNs) for local feature extraction and Long Short-Term Memory (LSTM) networks for temporal modeling. The architecture is further optimized using the Squirrel Search Algorithm (SSA), enabling effective hyperparameter tuning while maintaining computational efficiency. Our pipeline incorporates rigorous preprocessing, stratified data splitting, and dynamic class weighting to enhance the detection of rare classes. Experimental evaluation on NSL-KDD demonstrates that IntrusionX achieves 98% accuracy in binary classification and 87% in 5-class classification, with significant improvements in minority class recall (U2R: 71%, R2L: 93%). The novelty of IntrusionX lies in its reproducible, imbalance-aware design with metaheuristic optimization.
- Abstract(参考訳): 侵入検知システム(IDS)は、NSL-KDDのようなベンチマークデータセットにおいて、サイバー攻撃の進化、高次元トラフィックデータ、厳しいクラス不均衡により、永続的な課題に直面している。
これらの問題に対処するために,局所的特徴抽出のための畳み込みニューラルネットワーク(CNN)と時間的モデリングのためのLong Short-Term Memory(LSTM)ネットワークを統合したハイブリッドディープラーニングフレームワークであるIntrusionXを提案する。
アーキテクチャはさらにSquirrel Search Algorithm (SSA)を用いて最適化されており、計算効率を維持しながら効果的なハイパーパラメータチューニングを実現している。
パイプラインには厳密な前処理,階層化データ分割,動的クラス重み付けが組み込まれ,レアクラスの検出が促進される。
NSL-KDDに関する実験的評価は、IntrusionXが2進分類で98%、5等分類で87%、マイノリティクラスリコール(U2R:71%、R2L:93%)で顕著に改善したことを示している。
IntrusionXの新規性は、再現性があり、メタヒューリスティックな最適化を備えた不均衡な設計にある。
関連論文リスト
- Efficient Memristive Spiking Neural Networks Architecture with Supervised In-Situ STDP Method [0.0]
時間的スパイクエンコーディングを備えたメムリスタベースのスパイキングニューラルネットワーク(SNN)は、超低エネルギー計算を可能にする。
本稿では,新しい教師付きin-situ学習アルゴリズムを用いて学習した回路レベルのメムリシブスパイクニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:09:48Z) - Efficient Fault Detection in WSN Based on PCA-Optimized Deep Neural Network Slicing Trained with GOA [0.6827423171182154]
従来の障害検出手法は、効率的なパフォーマンスのためにディープニューラルネットワーク(DNN)の最適化に苦労することが多い。
本研究では,これらの制約に対処するためにGrasshopper Optimization Algorithm(GOA)によって最適化されたDNNと主成分分析(PCA)を組み合わせた新しいハイブリッド手法を提案する。
従来の手法よりも優れた精度とリコールで,99.72%の分類精度を実現している。
論文 参考訳(メタデータ) (2025-05-11T15:51:56Z) - Adaptive Cyber-Attack Detection in IIoT Using Attention-Based LSTM-CNN Models [0.23408308015481666]
本研究では,ハイブリッドLSTM畳み込みニューラルネットワーク(CNN)のアーキテクチャに基づく高度な侵入検出(IDS)の開発と評価を行う。
本研究は二項分類と多項分類という2つの重要な分類課題に焦点を当てている。
バイナリ分類では、モデルはほぼ完全な精度を達成し、マルチクラス分類では、高い精度 (99.04%) を維持し、様々な攻撃タイプを0.0220%の損失値で効果的に分類した。
論文 参考訳(メタデータ) (2025-01-21T20:52:23Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
本稿では,HSI分類タスクのための漏洩統合火災ニューロンモデルに基づくスパイキングニューラルネットワーク(SNN)を構築する。
SNN-SWMRでは、タイムステップの約84%、トレーニング時間、テストタイムの約63%と70%を同じ精度で削減する必要がある。
論文 参考訳(メタデータ) (2024-09-18T00:51:01Z) - A model for multi-attack classification to improve intrusion detection
performance using deep learning approaches [0.0]
ここでの目的は、悪意のある攻撃を識別するための信頼性の高い侵入検知メカニズムを作ることである。
ディープラーニングベースのソリューションフレームワークは、3つのアプローチから成り立っている。
最初のアプローチは、adamax、SGD、adagrad、adam、RMSprop、nadam、adadeltaといった7つの機能を持つLong-Short Term Memory Recurrent Neural Network (LSTM-RNN)である。
モデルは特徴を自己学習し、攻撃クラスをマルチアタック分類として分類する。
論文 参考訳(メタデータ) (2023-10-25T05:38:44Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。