論文の概要: VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation
- arxiv url: http://arxiv.org/abs/2510.02086v1
- Date: Thu, 02 Oct 2025 14:52:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-03 16:59:21.172089
- Title: VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation
- Title(参考訳): VGDM:脳腫瘍検出・分節のための視覚誘導拡散モデル
- Authors: Arman Behnam,
- Abstract要約: VGDMは脳腫瘍の検出とセグメンテーションのための視覚誘導拡散フレームワークである。
拡散過程のコアに視覚変換器を埋め込む。
トランスフォーマーバックボーンは、MRIボリューム全体にわたってより効果的な空間関係のモデリングを可能にする。
ボクセルレベルの誤差を緩和し、きめ細かい腫瘍の詳細を回復する。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection and segmentation of brain tumors from magnetic resonance imaging (MRI) are essential for diagnosis, treatment planning, and clinical monitoring. While convolutional architectures such as U-Net have long been the backbone of medical image segmentation, their limited capacity to capture long-range dependencies constrains performance on complex tumor structures. Recent advances in diffusion models have demonstrated strong potential for generating high-fidelity medical images and refining segmentation boundaries. In this work, we propose VGDM: Vision-Guided Diffusion Model for Brain Tumor Detection and Segmentation framework, a transformer-driven diffusion framework for brain tumor detection and segmentation. By embedding a vision transformer at the core of the diffusion process, the model leverages global contextual reasoning together with iterative denoising to enhance both volumetric accuracy and boundary precision. The transformer backbone enables more effective modeling of spatial relationships across entire MRI volumes, while diffusion refinement mitigates voxel-level errors and recovers fine-grained tumor details. This hybrid design provides a pathway toward improved robustness and scalability in neuro-oncology, moving beyond conventional U-Net baselines. Experimental validation on MRI brain tumor datasets demonstrates consistent gains in Dice similarity and Hausdorff distance, underscoring the potential of transformer-guided diffusion models to advance the state of the art in tumor segmentation.
- Abstract(参考訳): MRI(MRI)による脳腫瘍の正確な検出とセグメンテーションは、診断、治療計画、臨床モニタリングに不可欠である。
U-Netのような畳み込みアーキテクチャは、長い間医療画像セグメンテーションのバックボーンであったが、その長距離依存関係をキャプチャする能力は、複雑な腫瘍構造の性能に制約を与えている。
拡散モデルの最近の進歩は、高忠実度医療画像の生成とセグメンテーション境界の精細化に強い可能性を示している。
本稿では,脳腫瘍検出とセグメント化のためのトランスフォーマー駆動拡散フレームワークである脳腫瘍検出とセグメント化のための視覚誘導拡散モデルを提案する。
拡散過程のコアに視覚変換器を埋め込むことにより、このモデルは、大域的文脈推論と反復的復調を併用し、体積精度と境界精度の両方を向上させる。
トランスフォーマーバックボーンはMRIの体積全体にわたる空間的関係のより効率的なモデリングを可能にし、拡散微細化はボクセルレベルの誤差を軽減し、きめ細かい腫瘍の詳細を復元する。
このハイブリッド設計は、従来のU-Netベースラインを超えて、ニューロオンコロジーにおける堅牢性とスケーラビリティを改善するための経路を提供する。
MRI脳腫瘍データセットに対する実験的検証は、Dice類似性とHausdorff距離において一貫した利得を示し、腫瘍セグメンテーションの最先端化に向けたトランスフォーマー誘導拡散モデルの可能性を示している。
関連論文リスト
- Unified HT-CNNs Architecture: Transfer Learning for Segmenting Diverse Brain Tumors in MRI from Gliomas to Pediatric Tumors [2.104687387907779]
トランスファーラーニングにより最適化されたハイブリッドトランスフォーマーと畳み込みニューラルネットワークのアンサンブルであるHT-CNNを紹介した。
この方法では、MRIデータから空間的および文脈的詳細を抽出し、一般的な腫瘍のタイプを表す多様なデータセットを微調整する。
本研究は, 医療イメージセグメンテーションにおけるトランスファーラーニングとアンサンブルアプローチの可能性を明らかにし, 臨床意思決定と患者ケアの大幅な向上を示唆するものである。
論文 参考訳(メタデータ) (2024-12-11T09:52:01Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI Generation and Diffuse Glioma Growth Prediction [0.5667953366862138]
本稿では,腫瘍マスクの将来の予測と,腫瘍が今後の治療計画にどう対応するかのマルチパラメトリック磁気共鳴画像(MRI)を提案する。
我々のアプローチは、最先端拡散確率モデルとディープセグメンテーションニューラルネットワークに基づいている。
論文 参考訳(メタデータ) (2023-09-11T12:12:52Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - View-Disentangled Transformer for Brain Lesion Detection [50.4918615815066]
より正確な腫瘍検出のためのMRI特徴抽出のための新しいビューディペンタングル変換器を提案する。
まず, 3次元脳スキャンにおいて, 異なる位置の長距離相関を求める。
第二に、トランスフォーマーはスライス機能のスタックを複数の2Dビューとしてモデル化し、これらの機能をビュー・バイ・ビューとして拡張する。
第三に、提案したトランスモジュールをトランスのバックボーンに展開し、脳病変を取り巻く2D領域を効果的に検出する。
論文 参考訳(メタデータ) (2022-09-20T11:58:23Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Learn-Morph-Infer: a new way of solving the inverse problem for brain
tumor modeling [1.1214822628210914]
本稿では,T1GdとFLAIR MRIから患者特異的な脳腫瘍の空間分布を推定する手法を提案する。
itLearn-Morph-Inferと組み合わせたこの手法は、広く利用可能なハードウェア上で、数分のオーダーでリアルタイムのパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-11-07T13:45:35Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。