論文の概要: SEER: The Span-based Emotion Evidence Retrieval Benchmark
- arxiv url: http://arxiv.org/abs/2510.03490v1
- Date: Fri, 03 Oct 2025 20:15:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.072668
- Title: SEER: The Span-based Emotion Evidence Retrieval Benchmark
- Title(参考訳): SEER: Span-based Emotion Evidence Retrievalベンチマーク
- Authors: Aneesha Sampath, Oya Aran, Emily Mower Provost,
- Abstract要約: 感情を表現する特定のテキストを識別する大規模言語モデルの能力をテストするために,SEER(Span-based Emotion Evidence Retrieval)ベンチマークを導入する。
我々は14個のオープンソースLCMを評価し、あるモデルでは1文入力で平均的な人的パフォーマンスにアプローチするが、その精度は長いパスで低下する。
- 参考スコア(独自算出の注目度): 8.124633573706761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the SEER (Span-based Emotion Evidence Retrieval) Benchmark to test Large Language Models' (LLMs) ability to identify the specific spans of text that express emotion. Unlike traditional emotion recognition tasks that assign a single label to an entire sentence, SEER targets the underexplored task of emotion evidence detection: pinpointing which exact phrases convey emotion. This span-level approach is crucial for applications like empathetic dialogue and clinical support, which need to know how emotion is expressed, not just what the emotion is. SEER includes two tasks: identifying emotion evidence within a single sentence, and identifying evidence across a short passage of five consecutive sentences. It contains new annotations for both emotion and emotion evidence on 1200 real-world sentences. We evaluate 14 open-source LLMs and find that, while some models approach average human performance on single-sentence inputs, their accuracy degrades in longer passages. Our error analysis reveals key failure modes, including overreliance on emotion keywords and false positives in neutral text.
- Abstract(参考訳): 感情を表現するテキストの特定のスパンを識別するLarge Language Models(LLM)機能をテストするためにSEER(Span-based Emotion Evidence Retrieval)ベンチマークを導入する。
単一のラベルを文全体に割り当てる従来の感情認識タスクとは異なり、SEERは感情の証拠を検出するという未調査のタスクをターゲットにしている。
このスパンレベルのアプローチは、感情がどんなものかだけでなく、感情がどのように表現されるかを知る必要がある、共感的対話や臨床サポートのようなアプリケーションにとって不可欠である。
SEERは2つのタスクを含む: 1つの文で感情的証拠を識別し、5つの連続した文の短い節で証拠を識別する。
1200の現実世界の文に感情と感情の証拠の新たなアノテーションが含まれている。
我々は14個のオープンソースLCMを評価し、あるモデルでは1文入力で平均的な人的パフォーマンスにアプローチするが、その精度は長いパスで低下する。
我々の誤り分析では、感情キーワードの過度な信頼や、中性テキストにおける偽陽性など、重要な障害モードが明らかにされている。
関連論文リスト
- Empaths at SemEval-2025 Task 11: Retrieval-Augmented Approach to Perceived Emotions Prediction [83.88591755871734]
EmoRAGは、SemEval-2025 Task 11, Subtask A: Multi-label Emotion Detectionのためのテキスト中の知覚感情を検出するように設計されたシステムである。
我々は、与えられたテキストスニペットから話者の知覚された感情を予測することに集中し、喜び、悲しみ、恐怖、怒り、驚き、嫌悪感などの感情をラベル付けする。
論文 参考訳(メタデータ) (2025-06-04T19:41:24Z) - UDDETTS: Unifying Discrete and Dimensional Emotions for Controllable Emotional Text-to-Speech [61.989360995528905]
制御可能な感情的TTSのための離散的感情と次元的感情を統一する普遍的なフレームワークであるUDDETTSを提案する。
このモデルは、次元的感情記述のための解釈可能なArousal-Dominance-Valence(ADV)空間を導入し、離散的な感情ラベルまたは非線形に定量化されたADV値によって駆動される感情制御をサポートする。
実験の結果, UDDETTSは3次元の線形感情制御を実現し, エンドツーエンドの感情音声合成能力に優れていた。
論文 参考訳(メタデータ) (2025-05-15T12:57:19Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
隠れ変数分離に基づく動的因果解離モデルを提案する。
このモデルは、対話の内容を効果的に分解し、感情の時間的蓄積を調べる。
具体的には,発話と隠れ変数の伝搬を推定する動的時間的ゆがみモデルを提案する。
論文 参考訳(メタデータ) (2023-09-13T12:58:09Z) - Experiencer-Specific Emotion and Appraisal Prediction [13.324006587838523]
NLPにおける感情分類は、文章や段落などの感情をテキストに割り当てる。
イベントの経験に焦点を合わせ、各イベントに感情(もしあれば)を割り当てます。
経験者の感情と評価のモデルが経験者に依存しないベースラインより優れています。
論文 参考訳(メタデータ) (2022-10-21T16:04:27Z) - CEFER: A Four Facets Framework based on Context and Emotion embedded
features for Implicit and Explicit Emotion Recognition [2.5137859989323537]
文レベルと単語レベルの両方でテキストを解析するフレームワークを提案する。
CEFER (Context and Emotion embedded Framework for Emotion Recognition) と呼ぶ。
CEFERは、暗黙の感情を含む各単語の感情ベクトルと、文脈に基づく各単語の特徴ベクトルを結合する。
論文 参考訳(メタデータ) (2022-09-28T11:16:32Z) - Speech Synthesis with Mixed Emotions [77.05097999561298]
異なる感情の音声サンプル間の相対的な差を測定する新しい定式化を提案する。
次に、私たちの定式化を、シーケンスからシーケンスまでの感情的なテキストから音声へのフレームワークに組み込む。
実行時に、感情属性ベクトルを手動で定義し、所望の感情混合を生成するためにモデルを制御する。
論文 参考訳(メタデータ) (2022-08-11T15:45:58Z) - Uncovering the Limits of Text-based Emotion Detection [0.0]
感情分類のための最大のコーパスは、GoEmotions、読者によってラベル付けされた58Kメッセージ、Vent、ライターがラベル付けされた33Mメッセージである。
我々はベンチマークを設計し、BERT上に2つのシンプルな新しいモデルを含むいくつかの特徴空間と学習アルゴリズムを評価する。
論文 参考訳(メタデータ) (2021-09-04T16:40:06Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z) - SpanEmo: Casting Multi-label Emotion Classification as Span-prediction [15.41237087996244]
マルチラベル感情分類をスパンプレディションとした新しいモデル「SpanEmo」を提案する。
入力文中の複数の共存感情をモデル化することに焦点を当てた損失関数を導入する。
SemEval2018マルチラベル感情データを3つの言語セットで実験した結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2021-01-25T12:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。