論文の概要: Subsystem many-hypercube codes: High-rate concatenated codes with low-weight syndrome measurements
- arxiv url: http://arxiv.org/abs/2510.04526v1
- Date: Mon, 06 Oct 2025 06:34:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-07 16:52:59.709897
- Title: Subsystem many-hypercube codes: High-rate concatenated codes with low-weight syndrome measurements
- Title(参考訳): サブシステム多ハイパーキューブ符号:低重症候群測定による高次連結符号
- Authors: Ryota Nakai, Hayato Goto,
- Abstract要約: 量子誤り訂正符号(QECC)は、十分な数の物理量子ビットが得られない限り、高い閾値に加えて高い符号化レートを必要とする。
Many-hypercube (MHC) codes defined as the concatenation of the [6,4,2] quantum error-detecting code has proposed as high- Performance and high-encoding-rate QECCs。
ブロックマップとニューラルネットワークデコーダを開発し、有界距離デコーダよりも優れた性能を示すことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error-correcting codes (QECCs) require high encoding rate in addition to high threshold unless a sufficiently large number of physical qubits are available. The many-hypercube (MHC) codes defined as the concatenation of the [[6,4,2]] quantum error-detecting code have been proposed as high-performance and high-encoding-rate QECCs. However, the concatenated codes have a disadvantage that the syndrome weight grows exponentially with respect to the concatenation level. To address this issue, here we propose subsystem quantum codes based on the MHC codes. In particular, we study the smallest subsystem MHC codes, namely, subsystem codes derived from the concatenated [[4,2,2]] error-detecting codes. The resulting codes have a constant syndrome-measurement weight of 4, while keeping high encoding rates. We develop the block-MAP and neural-network decoders and show that they demonstrate superior performance to the bounded-distance decoder.
- Abstract(参考訳): 量子誤り訂正符号(QECC)は、十分な数の物理量子ビットが得られない限り、高い閾値に加えて高い符号化レートを必要とする。
many-hypercube (MHC) 符号は[6,4,2]量子誤り検出符号の結合として定義される。
しかし、連結符号は、結合レベルに関して、シンドロームの重量が指数関数的に増加するという欠点がある。
この問題に対処するため,MHC符号に基づくサブシステム量子符号を提案する。
特に,結合した[[4,2,2]]エラー検出符号から派生した最小のサブシステムMHC符号について検討する。
結果として得られた符号は、高い符号化率を維持しながら、一定のシンドローム測定重量が4である。
ブロックマップとニューラルネットワークデコーダを開発し、有界距離デコーダよりも優れた性能を示すことを示す。
関連論文リスト
- Existence and Characterisation of Bivariate Bicycle Codes [0.0]
BB符号は、オーバーヘッドが低く、誤り訂正能力が向上したコンパクトな量子メモリを提供することを示す。
リング構造を利用してこれらの符号を探索し、それらの次元とそれらの存在条件を予測する。
論文 参考訳(メタデータ) (2025-02-24T11:04:15Z) - Many-hypercube codes: High-rate quantum error-correcting codes for high-performance fault-tolerant quantum computing [0.0]
本稿では,高速量子符号の新たなファミリとして,小型量子誤り検出符号を提案する。
これらの単純な構造は、論理キュービットに対応するハイパーキューブを用いた幾何学的解釈を可能にする。
回路レベルのノイズモデルにおいても高い誤差閾値を達成する。
論文 参考訳(メタデータ) (2024-03-24T07:46:26Z) - Concatenating Binomial Codes with the Planar Code [0.0]
回転ボソニック符号は超伝導量子ビット実験における量子ビットの魅力的な符号化である。
耐故障性量子計算のための計測に基づくスキームにおいて,これらの符号と平面符号の整合性について検討する。
二項符号量子ビットを用いた平面符号の優れた性能を得るために、適応位相測定、最大量子状態推定、重み付き最小重み復号法を実装する必要がある。
論文 参考訳(メタデータ) (2023-12-22T02:34:56Z) - Quaternary Neural Belief Propagation Decoding of Quantum LDPC Codes with Overcomplete Check Matrices [45.997444794696676]
量子低密度パリティチェック(QLDPC)符号は、量子コンピュータにおける誤り訂正の候補として有望である。
量子コンピュータでQLDPCコードを実装する際の大きな課題の1つは、普遍デコーダの欠如である。
まず、オーバーコンプリートチェック行列で動作する信念伝搬(BP)デコーダを用いてQLDPC符号を復号する。
我々は,QLPDC符号の最適2値BPデコーダとして研究されたNBPデコーダを,第4次BPデコーダに拡張する。
論文 参考訳(メタデータ) (2023-08-16T08:24:06Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
我々は、デコーダに様々な局所性制限を課すことにより、濃密な符号化について検討する。
このタスクでは、送信者アリスと受信機ボブが絡み合った状態を共有する。
論文 参考訳(メタデータ) (2021-09-26T07:29:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。