論文の概要: AgentZero++: Modeling Fear-Based Behavior
- arxiv url: http://arxiv.org/abs/2510.05185v1
- Date: Sun, 05 Oct 2025 22:33:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 17:57:07.898022
- Title: AgentZero++: Modeling Fear-Based Behavior
- Title(参考訳): AgentZero++: Fearベースの振る舞いのモデリング
- Authors: Vrinda Malhotra, Jiaman Li, Nandini Pisupati,
- Abstract要約: 我々は,集団暴力をシミュレートするための認知,感情,社会的メカニズムを統合したエージェントベースモデルであるAgentZero++を提案する。
EpsteinのAgent_Zeroフレームワークをベースにして、8つの振る舞い拡張でオリジナルのモデルを拡張します。
これらの追加により、エージェントは内部の状態、以前の経験、社会的フィードバックに基づいて適応できる。
- 参考スコア(独自算出の注目度): 4.783433971864009
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present AgentZero++, an agent-based model that integrates cognitive, emotional, and social mechanisms to simulate decentralized collective violence in spatially distributed systems. Building on Epstein's Agent\_Zero framework, we extend the original model with eight behavioral enhancements: age-based impulse control; memory-based risk estimation; affect-cognition coupling; endogenous destructive radius; fight-or-flight dynamics; affective homophily; retaliatory damage; and multi-agent coordination. These additions allow agents to adapt based on internal states, previous experiences, and social feedback, producing emergent dynamics such as protest asymmetries, escalation cycles, and localized retaliation. Implemented in Python using the Mesa ABM framework, AgentZero++ enables modular experimentation and visualization of how micro-level cognitive heterogeneity shapes macro-level conflict patterns. Our results highlight how small variations in memory, reactivity, and affective alignment can amplify or dampen unrest through feedback loops. By explicitly modeling emotional thresholds, identity-driven behavior, and adaptive networks, this work contributes a flexible and extensible platform for analyzing affective contagion and psychologically grounded collective action.
- Abstract(参考訳): 本稿では,空間分散システムにおける分散型集団暴力をシミュレートするための認知,感情,社会メカニズムを統合したエージェントベースモデルであるAgentZero++を提案する。
Epstein の Agent\_Zero フレームワークをベースとして,年齢ベースのインパルス制御,メモリベースのリスク推定,感情と認知の結合,内因性破壊半径,戦闘と飛行のダイナミックス,感情的ホモフィリー,報復的ダメージ,マルチエージェント協調という8つの行動的拡張をオリジナルモデルに拡張した。
これらの追加により、エージェントは内部の状態、過去の経験、社会的フィードバックに基づいて適応することができ、抗議の非対称性、エスカレーションサイクル、局所的報復のような創発的なダイナミクスを生み出す。
Mesa ABMフレームワークを使用してPythonで実装されたAgentZero++は、マクロレベルのコンフリクトパターンをマイクロレベルの認知異質性がどのように形成するかのモジュラー実験と視覚化を可能にする。
私たちの結果は、記憶、反応性、感情的アライメントの小さな変化が、フィードバックループを通じて不安を増幅または弱めるかを強調します。
感情的閾値、アイデンティティ駆動行動、適応的ネットワークを明示的にモデル化することにより、この研究は、感情的伝染と心理的に根拠付けられた集団行動を分析するための柔軟で拡張可能なプラットフォームに寄与する。
関連論文リスト
- Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails [103.05296856071931]
本稿では,自己進化型大規模言語モデル(LLM)エージェントに特有の,アライメント・ティッピング・プロセス(ATP)を同定する。
ATPは、連続的な相互作用によってエージェントが訓練中に確立されたアライメント制約を放棄し、強化された自己関心の戦略を支持するときに生じる。
実験の結果、アライメントの利点は自己進化の下で急速に低下し、最初は整合性のない状態に収束したモデルであることが判明した。
論文 参考訳(メタデータ) (2025-10-06T14:48:39Z) - From Pheromones to Policies: Reinforcement Learning for Engineered Biological Swarms [0.0]
本研究では, フェロモンを介するセロモン凝集と強化学習(RL)の理論的等価性を確立する。
我々は,フェロモンが数学的に相互学習の更新を反映していることを示し,捕食作業を行う線虫群をモデル化した。
この結果から, 環境信号が外部メモリとして機能する分散RLプロセスは, スティグマイシン系が本質的にコード化されていることが示唆された。
論文 参考訳(メタデータ) (2025-09-24T13:16:35Z) - DynamiX: Large-Scale Dynamic Social Network Simulator [101.65679342680542]
DynamiXは、動的ソーシャルネットワークモデリングに特化した新しい大規模ソーシャルネットワークシミュレータである。
世論のリーダーに対しては、情報ストリームに基づくリンク予測手法を提案し、同様の姿勢で潜在的ユーザを推薦する。
一般ユーザに対しては,不等式指向の行動決定モジュールを構築する。
論文 参考訳(メタデータ) (2025-07-26T12:13:30Z) - EgoAgent: A Joint Predictive Agent Model in Egocentric Worlds [119.02266432167085]
EgoAgentは単一変換器内での表現、予測、動作を同時に学習する統合エージェントモデルである。
EgoAgentは、タスクをインターリーブされた状態とアクションのシーケンスとして定式化することで、これらの能力間の因果的および時間的依存関係を明示的にモデル化する。
EgoAgentの画像分類,エゴセントリックな将来の状態予測,3次元人間の動作予測といった代表的課題に対する総合的な評価は,本手法の優位性を示している。
論文 参考訳(メタデータ) (2025-02-09T11:28:57Z) - Decentralized Adversarial Training over Graphs [44.03711922549992]
近年、敵攻撃に対する機械学習モデルの脆弱性が注目されている。
マルチエージェントシステムのための分散逆数フレームワークを開発する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - Group Cohesion in Multi-Agent Scenarios as an Emergent Behavior [0.0]
本研究は,グループ・アフィリエイト,確実性,能力に対する本質的なニーズを持つインバインエージェントが,エージェント間の社会的行動の出現につながることを示す。
この行動は、グループ内のエージェントに対する利他主義と、グループ外のエージェントに対する敵対的な傾向を表現している。
論文 参考訳(メタデータ) (2022-11-03T18:37:05Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
本稿では,出力確率,時間的予測,モジュール型人工ニューラルネットワークアーキテクチャを提案する。
我々のアーキテクチャは、割当マップと解釈できる潜在状態が発達していることを示す。
アクティブな推論と組み合わせることで、フレキシブルでゴール指向の動作が実行可能であることを示す。
論文 参考訳(メタデータ) (2022-02-23T14:13:04Z) - Clustering Effect of (Linearized) Adversarial Robust Models [60.25668525218051]
本稿では, 敵の強靭性に対する新たな理解を提案し, ドメイン適応や頑健性向上といったタスクに適用する。
提案したクラスタリング戦略の合理性と優越性を実験的に評価した。
論文 参考訳(メタデータ) (2021-11-25T05:51:03Z) - An active inference model of collective intelligence [0.0]
本稿では,局所的な個人レベルの相互作用と集団的知性の関係をシミュレートする最小エージェントモデルを提案する。
その結果, エージェントの局所的最適とグローバル的最適の整合性の相補的なメカニズムを提供することにより, 段階的認知遷移がシステム性能を向上させることが示された。
論文 参考訳(メタデータ) (2021-04-02T14:32:01Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。