論文の概要: An active inference model of collective intelligence
- arxiv url: http://arxiv.org/abs/2104.01066v1
- Date: Fri, 2 Apr 2021 14:32:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 16:59:01.588300
- Title: An active inference model of collective intelligence
- Title(参考訳): 集団知能のアクティブ推論モデル
- Authors: Rafael Kaufmann, Pranav Gupta, Jacob Taylor
- Abstract要約: 本稿では,局所的な個人レベルの相互作用と集団的知性の関係をシミュレートする最小エージェントモデルを提案する。
その結果, エージェントの局所的最適とグローバル的最適の整合性の相補的なメカニズムを提供することにより, 段階的認知遷移がシステム性能を向上させることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To date, formal models of collective intelligence have lacked a plausible
mathematical description of the relationship between local-scale interactions
between highly autonomous sub-system components (individuals) and global-scale
behavior of the composite system (the collective). In this paper we use the
Active Inference Formulation (AIF), a framework for explaining the behavior of
any non-equilibrium steady state system at any scale, to posit a minimal
agent-based model that simulates the relationship between local
individual-level interaction and collective intelligence (operationalized as
system-level performance). We explore the effects of providing baseline AIF
agents (Model 1) with specific cognitive capabilities: Theory of Mind (Model
2); Goal Alignment (Model 3), and Theory of Mind with Goal Alignment (Model 4).
These stepwise transitions in sophistication of cognitive ability are motivated
by the types of advancements plausibly required for an AIF agent to persist and
flourish in an environment populated by other AIF agents, and have also
recently been shown to map naturally to canonical steps in human cognitive
ability. Illustrative results show that stepwise cognitive transitions increase
system performance by providing complementary mechanisms for alignment between
agents' local and global optima. Alignment emerges endogenously from the
dynamics of interacting AIF agents themselves, rather than being imposed
exogenously by incentives to agents' behaviors (contra existing computational
models of collective intelligence) or top-down priors for collective behavior
(contra existing multiscale simulations of AIF). These results shed light on
the types of generic information-theoretic patterns conducive to collective
intelligence in human and other complex adaptive systems.
- Abstract(参考訳): 現在までに、集団知能の形式的モデルには、高度自律的なサブシステムコンポーネント(個人)間の局所的な相互作用と複合システム(集団)のグローバルな挙動の関係に関する、妥当な数学的記述が欠けている。
本稿では、任意のスケールで非平衡定常状態系の挙動を説明するためのフレームワークであるActive Inference Formulation(AIF)を用いて、局所的な個人レベルの相互作用と集団知能(システムレベルのパフォーマンスとして操作)の関係をシミュレートする最小限のエージェントベースモデルを提案する。
本稿では,心の理論(モデル2),目標アライメント(モデル3),目標アライメントを用いた心の理論(モデル4)という,特定の認知能力を備えたベースラインaifエージェント(モデル1)の提供の効果について検討する。
認知能力の高度化におけるこれらの段階的な遷移は、aifエージェントが他のaifエージェントが居住する環境で持続し繁栄するために必要な進歩の種類に動機付けられており、最近は人間の認知能力の標準的ステップに自然にマッピングすることが示されている。
その結果, エージェントの局所的最適とグローバル的最適の整合性の相補的なメカニズムを提供することにより, 段階的認知遷移がシステム性能を向上させることが示された。
アライメントは、エージェントの行動(集団知能の既存の計算モデル)や集団行動のためのトップダウン事前(aifの既存のマルチスケールシミュレーション)へのインセンティブによって外因的に課されるのではなく、相互作用するaifエージェント自体のダイナミクスから内在的に発生する。
これらの結果は、人間や他の複雑な適応システムにおける集団知性に寄与する汎用情報理論のパターンの種類に光を当てた。
関連論文リスト
- Factorised Active Inference for Strategic Multi-Agent Interactions [1.9389881806157316]
この目的に2つの補完的アプローチを組み込むことができる。
アクティブ推論フレームワーク(AIF)は、エージェントが環境内の信念や行動に適応するために生成モデルをどのように利用するかを記述する。
ゲーム理論は、潜在的に競合する目的を持つエージェント間の戦略的相互作用を定式化する。
本稿では,各エージェントが他のエージェントの内部状態に対する明示的かつ個別的な信念を維持し,それらを共同で戦略的計画に利用する生成モデルの因子化を提案する。
論文 参考訳(メタデータ) (2024-11-11T21:04:43Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Behavior-Inspired Neural Networks for Relational Inference [3.7219180084857473]
最近の研究は、エージェント間の関係を、その身体行動の観察に基づいて分類することを学ぶ。
エージェントの観測可能な振る舞いと,その動作を決定する潜在カテゴリの抽象化レベルを導入する。
エージェントの身体的近さと嗜好を非線形意見力学モデルに統合し、相互排他的潜在カテゴリを特定し、エージェントの時間的進化を予測し、エージェントの身体的挙動を制御するメカニズムを提供する。
論文 参考訳(メタデータ) (2024-06-20T21:36:54Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
本稿では,対話型グループコンセンサスの概念を明示的に導入した,マルチエージェント軌道予測の新しい定式化について述べる。
チームスポーツと歩行者の2つのマルチエージェント設定において,提案手法は既存手法と比較して常に優れた性能を達成している。
論文 参考訳(メタデータ) (2022-10-17T07:16:44Z) - Meta-brain Models: biologically-inspired cognitive agents [0.0]
メタ脳モデルと呼ぶ計算手法を提案する。
特殊なモデルを用いて構成したレイヤの組み合わせを提案する。
我々は、この柔軟でオープンソースなアプローチの開発における次のステップを提案して、結論付けます。
論文 参考訳(メタデータ) (2021-08-31T05:20:53Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Divide and Rule: Recurrent Partitioned Network for Dynamic Processes [25.855428321990328]
多くの動的なプロセスは、物理的システムから社会学的分析まで、相互作用する変数に関与している。
我々のゴールは、部分全体階層を持つシステムを表現し、システム内変数間の暗黙の依存関係を発見することである。
提案アーキテクチャは, (i) 複数のレベルにおける観測の階層的かつ時間的に一貫した表現を抽出する知覚モジュール, (ii) 各レベルにおけるニューロン間の関係性を決定する導出モジュール, (iii)時間分布推定を条件に未来を予測する統計的モジュールからなる。
論文 参考訳(メタデータ) (2021-06-01T06:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。