論文の概要: A Stochastic Differential Equation Framework for Multi-Objective LLM Interactions: Dynamical Systems Analysis with Code Generation Applications
- arxiv url: http://arxiv.org/abs/2510.10739v1
- Date: Sun, 12 Oct 2025 18:25:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 18:06:30.090626
- Title: A Stochastic Differential Equation Framework for Multi-Objective LLM Interactions: Dynamical Systems Analysis with Code Generation Applications
- Title(参考訳): 多目的LLMインタラクションのための確率微分方程式フレームワーク:コード生成アプリケーションを用いた動的システム解析
- Authors: Shivani Shukla, Himanshu Joshi,
- Abstract要約: 本稿では,反復型大言語モデル(LLM)相互作用における多目的最適化ダイナミクスをモデル化するための一般微分方程式フレームワークを提案する。
概念実証アプリケーションとして反復コード生成を用いた理論的枠組みを検証する。
- 参考スコア(独自算出の注目度): 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a general stochastic differential equation framework for modelling multiobjective optimization dynamics in iterative Large Language Model (LLM) interactions. Our framework captures the inherent stochasticity of LLM responses through explicit diffusion terms and reveals systematic interference patterns between competing objectives via an interference matrix formulation. We validate our theoretical framework using iterative code generation as a proof-of-concept application, analyzing 400 sessions across security, efficiency, and functionality objectives. Our results demonstrate strategy-dependent convergence behaviors with rates ranging from 0.33 to 1.29, and predictive accuracy achieving R2 = 0.74 for balanced approaches. This work proposes the feasibility of dynamical systems analysis for multi-objective LLM interactions, with code generation serving as an initial validation domain.
- Abstract(参考訳): 本稿では,反復型大規模言語モデル(LLM)相互作用における多目的最適化ダイナミクスをモデル化するための一般確率微分方程式フレームワークを提案する。
本フレームワークは, 明示的拡散項によるLLM応答の固有確率性を捉え, 干渉行列の定式化による競合対象間の系統的干渉パターンを明らかにする。
概念実証アプリケーションとして反復コード生成を用いた理論的枠組みを検証し,セキュリティ,効率,機能目標の400セッションを分析した。
本研究は, 戦略依存収束挙動を0.33から1.29の範囲で示し, バランスの取れたアプローチに対してR2=0.74の予測精度を示した。
本研究は、コード生成が初期検証ドメインとして機能する多目的LLMインタラクションのための動的システム解析の実現可能性を提案する。
関連論文リスト
- A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
本研究では、データから直接分数微分方程式(FDE)を発見するための段階的なデータ駆動フレームワークを提案する。
我々のフレームワークは、スパース観測とノイズ観測の分離と再構成のための代理モデルとしてディープニューラルネットワークを適用している。
本研究は, 凍結土壌のクリープ挙動に関する, 合成異常拡散データおよび実験データを含む, 各種データセットにわたるフレームワークの検証を行った。
論文 参考訳(メタデータ) (2024-12-05T08:38:30Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [53.03951222945921]
我々はスムーズな(摂動された)ポリシーを解析し、線形オラクルが使用する方向に対して制御されたランダムな摂動を付加する。
我々の主な貢献は、過剰リスクを摂動バイアス、統計的推定誤差、最適化誤差に分解する一般化境界である。
車両のスケジューリングやスムーズ化がトラクタブルトレーニングと制御された一般化の両方を可能にしていることを示す。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
マルチタスク学習(MTL)は、タスク間の共有知識を活用し、一般化とパフォーマンスを改善するために設計された強力な機械学習パラダイムである。
本稿では,タスククラスタリングと特徴変換の交点におけるMTL手法を提案する。
両段階において、鍵となる側面は減った目標と特徴の解釈可能性を維持することである。
論文 参考訳(メタデータ) (2024-06-12T08:30:16Z) - Response Theory via Generative Score Modeling [0.0]
スコアベース生成モデルとGFDT(Generalized Fluctuation-Dissipation Theorem)を組み合わせた外部摂動に対する動的システムの応答解析手法を提案する。
この手法は,非ガウス統計を含むシステム応答の正確な推定を可能にする。
論文 参考訳(メタデータ) (2024-02-01T21:38:10Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
本研究では,対話対象の連続時間力学の不確実性を考慮したモデリングを初めて行った。
我々のモデルは、独立力学と信頼性のある不確実性推定との相互作用の両方を推測する。
論文 参考訳(メタデータ) (2022-05-24T08:36:25Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。