論文の概要: Towards Foundation Inference Models that Learn ODEs In-Context
- arxiv url: http://arxiv.org/abs/2510.12650v1
- Date: Tue, 14 Oct 2025 15:44:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-15 21:19:14.995596
- Title: Towards Foundation Inference Models that Learn ODEs In-Context
- Title(参考訳): ODEを文脈で学習する基礎推論モデルに向けて
- Authors: Maximilian Mauel, Manuel Hinz, Patrick Seifner, David Berghaus, Ramses J. Sanchez,
- Abstract要約: FIM-ODE(Foundation Inference Model for ODEs, FIM-ODE)を導入する。
合成データに基づいてトレーニングされたこのモデルは、フレキシブルなニューラル演算子を使用して、破損したデータからでも堅牢なODE推論を行う。
実験により,FIM-ODEが精度の高い推定値を提供し,その推定ベクトル場の構造を定性的に比較した。
- 参考スコア(独自算出の注目度): 3.4253416336476246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ordinary differential equations (ODEs) describe dynamical systems evolving deterministically in continuous time. Accurate data-driven modeling of systems as ODEs, a central problem across the natural sciences, remains challenging, especially if the data is sparse or noisy. We introduce FIM-ODE (Foundation Inference Model for ODEs), a pretrained neural model designed to estimate ODEs zero-shot (i.e., in context) from sparse and noisy observations. Trained on synthetic data, the model utilizes a flexible neural operator for robust ODE inference, even from corrupted data. We empirically verify that FIM-ODE provides accurate estimates, on par with a neural state-of-the-art method, and qualitatively compare the structure of their estimated vector fields.
- Abstract(参考訳): 通常の微分方程式(ODE)は連続時間で決定的に進化する力学系を記述する。
自然科学における中心的な問題であるODEとしてのシステムの正確なデータ駆動モデリングは、特にデータが希少でノイズの多い場合、依然として困難である。
FIM-ODE(Foundation Inference Model for ODEs, FIM-ODE)は, 疎度・雑音の観測から, ODEのゼロショット(文脈)を推定する事前学習型ニューラルモデルである。
合成データに基づいてトレーニングされたこのモデルは、フレキシブルなニューラル演算子を使用して、破損したデータからでも堅牢なODE推論を行う。
実験により,FIM-ODEが精度の高い推定値を提供し,その推定ベクトル場の構造を定性的に比較した。
関連論文リスト
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
本稿では,従来の2段階モデリングプロセスから離れることで,低次元力学系をモデル化する概念シフトを提案する。
最初に閉形式方程式を発見して解析する代わりに、我々のアプローチ、直接意味モデリングは力学系の意味表現を予測する。
私たちのアプローチは、モデリングパイプラインを単純化するだけでなく、結果のモデルの透明性と柔軟性も向上します。
論文 参考訳(メタデータ) (2025-01-30T18:36:48Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Zero-shot Imputation with Foundation Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
ノイズや不規則なサンプル測定を用いて微分方程式を学習する手法について議論する。
我々の方法論では、ディープニューラルネットワークとニューラル常微分方程式(ODE)アプローチの統合において、大きな革新が見られる。
ベクトル場を記述するモデルを学習するためのフレームワークは,雑音測定において非常に効果的である。
論文 参考訳(メタデータ) (2022-05-19T11:24:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。