論文の概要: ESI: Epistemic Uncertainty Quantification via Semantic-preserving Intervention for Large Language Models
- arxiv url: http://arxiv.org/abs/2510.13103v1
- Date: Wed, 15 Oct 2025 02:46:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.478834
- Title: ESI: Epistemic Uncertainty Quantification via Semantic-preserving Intervention for Large Language Models
- Title(参考訳): ESI:大規模言語モデルに対する意味保存的介入によるてんかん不確かさの定量化
- Authors: Mingda Li, Xinyu Li, Weinan Zhang, Longxuan Ma,
- Abstract要約: 不確実性定量化(UQ)はモデルの信頼性を向上させるための有望なアプローチであるが、Large Language Models(LLM)の不確実性は自明ではない。
本稿では,意味保存介入前後のモデル出力の変動を計測する新しいグレイボックス不確実性定量化手法を提案する。
- 参考スコア(独自算出の注目度): 23.44710972442814
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Uncertainty Quantification (UQ) is a promising approach to improve model reliability, yet quantifying the uncertainty of Large Language Models (LLMs) is non-trivial. In this work, we establish a connection between the uncertainty of LLMs and their invariance under semantic-preserving intervention from a causal perspective. Building on this foundation, we propose a novel grey-box uncertainty quantification method that measures the variation in model outputs before and after the semantic-preserving intervention. Through theoretical justification, we show that our method provides an effective estimate of epistemic uncertainty. Our extensive experiments, conducted across various LLMs and a variety of question-answering (QA) datasets, demonstrate that our method excels not only in terms of effectiveness but also in computational efficiency.
- Abstract(参考訳): 不確実性定量化(UQ)はモデルの信頼性を向上させるための有望なアプローチであるが、大規模言語モデル(LLM)の不確実性は非自明である。
本研究では,LLMの不確実性と意味保存的介入による不均一性との関係を因果的観点から確立する。
本研究の基盤として,意味保存介入前後のモデル出力の変動を測定するグレイボックス不確実性定量化手法を提案する。
理論的正当性を通じて,本手法がてんかん不確実性の効果的な推定方法であることを示す。
様々なLLMおよび様々なQAデータセットを用いて実施した広範囲な実験により,本手法が有効性だけでなく,計算効率にも優れていることが実証された。
関連論文リスト
- Towards Reliable LLM-based Robot Planning via Combined Uncertainty Estimation [68.106428321492]
大規模言語モデル (LLM) は高度な推論能力を示し、ロボットが自然言語の命令を理解し、適切な接地で高レベルな計画を生成することができる。
LLMの幻覚は重大な課題であり、しばしば過度に信頼され、不一致または安全でない計画に繋がる。
本研究は, 信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性・信頼性評価を別々に評価するものである。
論文 参考訳(メタデータ) (2025-10-09T10:26:58Z) - Towards Harmonized Uncertainty Estimation for Large Language Models [22.58034272573749]
不確実性推定によって世代間の信頼性を定量化することが不可欠である。
CUE(Corrector for Uncertainity Estimation:不確かさ推定のためのコレクタ)を提案する。
論文 参考訳(メタデータ) (2025-05-25T10:17:57Z) - TokUR: Token-Level Uncertainty Estimation for Large Language Model Reasoning [27.449948943467163]
token-level Uncertainty Estimation framework for Reasoning (TokUR)を提案する。
TokURは、大規模言語モデルにおいて、数学的推論における応答を自己評価し、自己改善することを可能にする。
様々な難易度を持つ数学的推論データセットの実験により、TokURは答えの正しさとモデルロバストネスと強い相関を示すことが示された。
論文 参考訳(メタデータ) (2025-05-16T22:47:32Z) - CLUE: Concept-Level Uncertainty Estimation for Large Language Models [49.92690111618016]
大規模言語モデル(LLM)のための概念レベル不確実性推定のための新しいフレームワークを提案する。
LLMを利用して、出力シーケンスを概念レベルの表現に変換し、シーケンスを個別の概念に分解し、各概念の不確かさを個別に測定する。
我々は,文レベルの不確実性と比較して,CLUEがより解釈可能な不確実性推定結果を提供できることを示す実験を行った。
論文 参考訳(メタデータ) (2024-09-04T18:27:12Z) - Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models [96.43562963756975]
対象変数が条件と非条件生成信頼度のギャップである回帰モデルを訓練する。
この学習条件依存モデルを用いて、前のステップの不確実性に基づいて、現在の生成ステップの不確かさを変調する。
論文 参考訳(メタデータ) (2024-08-20T09:42:26Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
大規模言語モデル(LLM)の不確実性は、安全性と信頼性が重要であるアプリケーションには不可欠である。
ホワイトボックスとブラックボックス LLM における不確実性評価手法である Kernel Language Entropy (KLE) を提案する。
論文 参考訳(メタデータ) (2024-05-30T12:42:05Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
本稿では,効率的かつ高精度な不確実性定量化を深層学習に基づく代理モデルに統合する手法を提案する。
本手法は,フォワード問題と逆問題の両方に対して,堅牢かつ効率的な不確実性定量化機能を備えたディープラーニングに基づく代理モデルを提案する。
提案手法は, 長期予測を含むシナリオに適合し, 拡張された自己回帰ロールアウトに対する不確かさの伝播に優れる。
論文 参考訳(メタデータ) (2024-02-13T11:22:59Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。