論文の概要: Hybrid Boson Sampling-Neural Network Architecture for Enhanced Classification
- arxiv url: http://arxiv.org/abs/2510.13332v1
- Date: Wed, 15 Oct 2025 09:16:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-16 20:13:28.59378
- Title: Hybrid Boson Sampling-Neural Network Architecture for Enhanced Classification
- Title(参考訳): ハイブリッドボソンサンプリング-高次分類のためのニューラルネットワークアーキテクチャ
- Authors: Mohammad Sharifian, Abolfazl Bayat,
- Abstract要約: 我々は、ボソンサンプリングの計算能力とニューラルネットワークの適応性を組み合わせて量子カーネルを構築するフレームワークを開発する。
様々なクラスを持つ4つのデータセットを用いて、我々のモデルは古典線形およびシグモイドカーネルより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Demonstration of quantum advantage for classical machine learning tasks remains a central goal for quantum technologies and artificial intelligence. Two major bottlenecks to this goal are the high dimensionality of practical datasets and limited performance of near-term quantum computers. Boson sampling is among the few models with experimentally verified quantum advantage, yet it lacks practical applications. Here, we develop a hybrid framework that combines the computational power of boson sampling with the adaptability of neural networks to construct quantum kernels that enhance support vector machine classification. The neural network adaptively compresses the data features onto a programmable boson sampling circuit, producing quantum states that span a high-dimensional Hilbert space and enable improved classification performance. Using four datasets with various classes, we demonstrate that our model outperforms classical linear and sigmoid kernels. These results highlight the potential of boson sampling-based quantum kernels for practical quantum-enhanced machine learning.
- Abstract(参考訳): 古典的な機械学習タスクにおける量子優位性の実証は、量子技術と人工知能にとって依然として中心的な目標である。
この目標の2つの大きなボトルネックは、実用的なデータセットの高次元性と、短期量子コンピュータの限られた性能である。
ボソンサンプリングは、実験的に検証された量子優位性を持つ数少ないモデルである。
本稿では,ボソンサンプリングの計算能力とニューラルネットワークの適応性を組み合わせて,ベクトルマシンの分類を支援する量子カーネルを構築するハイブリッドフレームワークを開発する。
ニューラルネットワークは、データをプログラム可能なボソンサンプリング回路に適応的に圧縮し、高次元ヒルベルト空間にまたがる量子状態を生成し、より良い分類性能を実現する。
様々なクラスを持つ4つのデータセットを用いて、我々のモデルは古典線形およびシグモイドカーネルより優れていることを示す。
これらの結果は、実用的な量子強化機械学習のためのボソンサンプリングベースの量子カーネルの可能性を強調している。
関連論文リスト
- Enhanced image classification via hybridizing quantum dynamics with classical neural networks [0.0]
本稿では,古典的ニューラルネットワークと量子多体系の非平衡力学を組み合わせたハイブリッドプロトコルを提案する。
このアーキテクチャは、古典的なニューラルネットワークを活用して、高次元データを効率的に処理し、量子多体システム上で効果的にエンコードする。
論文 参考訳(メタデータ) (2025-07-18T00:15:14Z) - Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
本稿では,4量子ビット量子回路と古典的ニューラルネットワークを組み合わせた,分類タスクのためのハイブリッド量子古典型機械学習モデルを提案する。
このモデルは20エポック以上で訓練され、16エポックに設定されたIrisデータセットテストで100%の精度を達成した。
この研究は、ハイブリッド量子古典モデルの研究の活発化と、実際のデータセットへの適用性に寄与する。
論文 参考訳(メタデータ) (2024-10-21T13:15:12Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
我々は、MNIST桁の画像を低次元の特徴空間に圧縮する画像分類のためのハイブリッド量子古典モデルを実装した。
オートエンコーダは、各28タイムs28$イメージ(784ピクセル)を64次元潜在ベクトルに圧縮する。
これらの特徴を5量子ビット量子状態にマッピングする。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Quantum machine learning for image classification [39.58317527488534]
本研究では、量子力学の原理を有効計算に活用する2つの量子機械学習モデルを紹介する。
我々の最初のモデルは、並列量子回路を持つハイブリッド量子ニューラルネットワークであり、ノイズの多い中間スケール量子時代においても計算の実行を可能にする。
第2のモデルは、クオン進化層を持つハイブリッド量子ニューラルネットワークを導入し、畳み込みプロセスによる画像の解像度を低下させる。
論文 参考訳(メタデータ) (2023-04-18T18:23:20Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
本稿では,量子畳み込みニューラルネットワークに基づく量子機械学習手法を提案する。
提案手法を用いて,MNISTデータセットの4クラス分類を,データエンコーディングの8つのキュービットと4つのアクニラキュービットを用いて実証する。
この結果から,学習可能なパラメータの数に匹敵する古典的畳み込みニューラルネットワークによる解の精度が示された。
論文 参考訳(メタデータ) (2022-03-29T09:07:18Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
本稿では, 量子回路に基づく生成モデルを構築し, 生成逆数ネットワークの事前分布を学習し, サンプル化する。
我々は、このハイブリッドアルゴリズムを171ドルのYb$+$ ion qubitsに基づいてイオントラップデバイスでトレーニングし、高品質な画像を生成する。
論文 参考訳(メタデータ) (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。