論文の概要: ReLACE: A Resource-Efficient Low-Latency Cortical Acceleration Engine
- arxiv url: http://arxiv.org/abs/2510.17392v1
- Date: Mon, 20 Oct 2025 10:33:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 00:56:39.411721
- Title: ReLACE: A Resource-Efficient Low-Latency Cortical Acceleration Engine
- Title(参考訳): ReLACE: リソース効率の良い低遅延皮質加速エンジン
- Authors: Sonu Kumar, Arjun S. Nair, Bhawna Chaudhary, Mukul Lokhande, Santosh Kumar Vishvakarma,
- Abstract要約: 我々は, Cortical Neural Pool architecture with a CORDIC-based Hodgkin Huxley (RCHH) neuron modelを提案する。
RCHHニューロンのFPGA実装は、24.5%のLUT削減と35.2%の改善速度を示している。
この設計は、リソース制約のあるエッジAIアプリケーションのための生物学的に正確で低リソースのスパイクニューラルネットワークの実装を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a Cortical Neural Pool (CNP) architecture featuring a high-speed, resource-efficient CORDIC-based Hodgkin Huxley (RCHH) neuron model. Unlike shared CORDIC-based DNN approaches, the proposed neuron leverages modular and performance-optimised CORDIC stages with a latency-area trade-off. The FPGA implementation of the RCHH neuron shows 24.5% LUT reduction and 35.2% improved speed, compared to SoTA designs, with 70% better normalised root mean square error (NRMSE). Furthermore, the CNP exhibits 2.85x higher throughput (12.69 GOPS) compared to a functionally equivalent CORDIC-based DNN engine, with only a 0.35% accuracy drop compared to the DNN counterpart on the MNIST dataset. The overall results indicate that the design shows biologically accurate, low-resource spiking neural network implementations for resource-constrained edge AI applications.
- Abstract(参考訳): 我々は,高速かつ資源効率のCORDICベースのHodgkin Huxley(RCHH)ニューロンモデルを備えた脳神経プール(CNP)アーキテクチャを提案する。
共有CORDICベースのDNNアプローチとは異なり、提案したニューロンは、モジュールおよび性能最適化CORDICステージを遅延領域トレードオフで活用する。
RCHHニューロンのFPGA実装は、SoTAの設計に比べて24.5%のLUT削減と35.2%の速度向上を示し、70%の正規化ルート平均二乗誤差(NRMSE)が得られた。
さらに、CNPは機能的に等価なCORDICベースのDNNエンジンと比較して2.85倍のスループット(12.69 GOPS)を示し、MNISTデータセットのDNNよりも0.35%の精度で低下している。
全体的な結果は、この設計が生物学的に正確で、リソース制約のあるエッジAIアプリケーションのための低リソースのスパイクニューラルネットワークの実装を示していることを示している。
関連論文リスト
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
本稿では,高精度かつエネルギー効率の高い単発多次元高調波検索のための変換に基づくニューロモルフィックアルゴリズムの可能性について検討する。
複雑な値の畳み込み層と活性化をスパイクニューラルネットワーク(SNN)に変換する新しい手法を開発した。
変換されたSNNは、元のCNNに比べて性能が低下し、ほぼ5倍の電力効率を実現している。
論文 参考訳(メタデータ) (2024-12-05T09:41:33Z) - Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
侵襲的脳-機械インタフェース(BMI)は運動障害患者の生活の質を著しく向上させる。
BMIは信頼性の高い復号化性能を提供しながら、厳格なレイテンシとエネルギー制約を満たす必要がある。
2匹のマカクザルの皮質スパイク列から指の速度を復号するためにRSNNを訓練した。
論文 参考訳(メタデータ) (2024-09-03T10:15:33Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - A Hybrid ANN-SNN Architecture for Low-Power and Low-Latency Visual Perception [27.144985031646932]
Spiking Neural Networks(SNN)は、バイオインスパイアされたニューラルネットワークの一種で、エッジデバイスに低消費電力で低レイテンシな推論をもたらすことを約束する。
イベントベース2Dおよび3Dヒューマンポーズ推定の課題について,本手法では,ANNに比べて性能を4%低下させることなく,88%の消費電力を消費することを示した。
論文 参考訳(メタデータ) (2023-03-24T17:38:45Z) - Ultra-low Latency Adaptive Local Binary Spiking Neural Network with
Accuracy Loss Estimator [4.554628904670269]
精度損失推定器を用いた超低レイテンシ適応型局所二元スパイクニューラルネットワーク(ALBSNN)を提案する。
実験の結果,ネットワークの精度を損なうことなく,ストレージ容量を20%以上削減できることがわかった。
論文 参考訳(メタデータ) (2022-07-31T09:03:57Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Strengthening the Training of Convolutional Neural Networks By Using
Walsh Matrix [0.0]
分類性能を向上させるため,DNNのトレーニングと構造を変更した。
畳み込みニューラルネットワーク(CNN)の最後の層に続く最小距離ネットワーク(MDN)が分類器として使用される。
異なる領域では、ノード数が少ないDivFEを使用することでより高い分類性能が得られたことが観察されている。
論文 参考訳(メタデータ) (2021-03-31T18:06:11Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
TDNN(State-of-the-the-art Factored Time delay Neural Network)の2種類のハイパーパラメータを自動的に学習するために、さまざまなニューラルネットワークサーチ(NAS)技術が使用されている。
DARTSメソッドはアーキテクチャ選択とLF-MMI(格子のないMMI)TDNNトレーニングを統合する。
300時間のSwitchboardコーパスで行われた実験では、自動構成システムはベースラインLF-MMI TDNNシステムより一貫して優れていることが示唆された。
論文 参考訳(メタデータ) (2020-07-17T08:32:11Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。