論文の概要: A Systematic Literature Review of the Use of GenAI Assistants for Code Comprehension: Implications for Computing Education Research and Practice
- arxiv url: http://arxiv.org/abs/2510.17894v2
- Date: Tue, 28 Oct 2025 21:19:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 20:20:46.445572
- Title: A Systematic Literature Review of the Use of GenAI Assistants for Code Comprehension: Implications for Computing Education Research and Practice
- Title(参考訳): コード理解におけるGenAIアシスタントの利用に関する体系的文献レビュー:コンピューティング教育研究と実践への示唆
- Authors: Yunhan Qiao, Md Istiak Hossain Shihab, Christopher Hundhausen,
- Abstract要約: 本稿では,生成的人工知能(GenAI)を利用したコード理解の向上のための手法とツールについて,体系的な文献レビューを行う。
本稿では,GenAIをベースとした手法とツールを分類し,その有効性の実証的評価を要約する。
- 参考スコア(独自算出の注目度): 0.45880283710344066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to comprehend code has long been recognized as an essential skill in software engineering. As programmers lean more heavily on generative artificial intelligence (GenAI) assistants to develop code solutions, it is becoming increasingly important for programmers to comprehend GenAI solutions so that they can verify their appropriateness and properly integrate them into existing code. At the same time, GenAI tools are increasingly being enlisted to provide programmers with tailored explanations of code written both by GenAI and humans. Thus, in computing education, GenAI presents new challenges and opportunities for learners who are trying to comprehend computer programs. To provide computing educators with evidence-based guidance on the use of GenAI to facilitate code comprehension and to identify directions for future research, we present a systematic literature review (SLR) of state-of-the-art approaches and tools that leverage GenAI to enhance code comprehension. Our SLR focuses on 31 studies published between 2022 and 2024. Despite their potential, GenAI assistants often yield inaccurate or unclear explanations, and novice programmers frequently struggle to craft effective prompts, thereby impeding their ability to leverage GenAI to aid code comprehension. Our review classifies GenAI-based approaches and tools, identifies methods used to study them, and summarizes the empirical evaluations of their effectiveness. We consider the implications of our findings for computing education research and practice, and identify directions for future research.
- Abstract(参考訳): コードを理解する能力は、長年、ソフトウェア工学において不可欠なスキルとして認識されてきた。
プログラマが生成人工知能(GenAI)アシスタントに強く依存してコードソリューションを開発するにつれ、プログラマがGenAIソリューションを理解することがますます重要になってきています。
同時に、GenAIツールが採用され、GenAIと人間によって書かれたコードについて、プログラマに適切な説明を提供するようになっている。
このように、コンピュータ教育において、GenAIは、コンピュータプログラムを理解しようとする学習者に対して、新たな課題と機会を提示している。
コード理解の容易化と今後の研究の方向性を明らかにするため,GenAIを活用した最新の手法とツールの体系的な文献レビュー(SLR)を行う。
SLRは2022年から2024年の間に発行された31の研究に焦点を当てている。
その可能性にもかかわらず、GenAIアシスタントは不正確または不明な説明を得ることが多く、初心者プログラマは効果的なプロンプトの作成に苦慮することが多く、それによってGenAIを活用してコードの理解を助ける能力が損なわれる。
本稿では,GenAIをベースとした手法とツールを分類し,その有効性の実証的評価を要約する。
本研究は,コンピュータ教育研究・実践における本研究の意義を考察し,今後の研究の方向性を明らかにする。
関連論文リスト
- Using Generative AI in Software Design Education: An Experience Report [0.6827423171182154]
学生はチームベースの課題を完了するためにGenAIを使用する必要があった。
学生はChatGPTがデザインプロセスで役立った多くの方法を特定した。
我々は、ソフトウェア設計クラスにGenAIを効果的にデプロイする方法について、教育者にとって重要な教訓をいくつか挙げた。
論文 参考訳(メタデータ) (2025-06-26T18:40:16Z) - From Recall to Reasoning: Automated Question Generation for Deeper Math Learning through Large Language Models [44.99833362998488]
先進数学のためのコンテンツ生成を最適化する第1ステップについて検討した。
我々は、GenAIがコース内容に関連する高品質な実践問題を生み出す能力について検討した。
論文 参考訳(メタデータ) (2025-05-17T08:30:10Z) - Lessons for GenAI Literacy From a Field Study of Human-GenAI Augmentation in the Workplace [0.11704154007740832]
本研究では、製品開発、ソフトウェアエンジニアリング、デジタルコンテンツ作成という3つの機能にまたがるGenAIの使用を比較した。
発見は、GenAIの使用とユーザのコンピューティング知識のレベルにおいて、幅広いばらつきを示している。
論文 参考訳(メタデータ) (2025-02-01T21:26:31Z) - Beyond the Hype: A Comprehensive Review of Current Trends in Generative AI Research, Teaching Practices, and Tools [4.352985782794601]
2024年、コンピュータ教室におけるGenAI利用の効果に関する新たな研究が生まれ始めた。
新しいデータには、GenAIを使って教室の授業を大規模にサポートし、学生にGenAIでプログラミングの仕方を教えることが含まれる。
プログラミングの課題について、生徒にパーソナライズされたフィードバックを提供したり、プログラミングとスキルを同時に教える新しい種類のツールが登場している。
論文 参考訳(メタデータ) (2024-12-19T11:01:11Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
我々は、モデルベースエンジニアリング(MBM&E)の限界に対処する手段として、生成人工知能(GenAI)を用いることができると論じる。
我々は、エンジニアの学習曲線の削減、レコメンデーションによる効率の最大化、ドメイン問題を理解するための推論ツールとしてのGenAIの使用を提案する。
論文 参考訳(メタデータ) (2024-07-09T23:13:26Z) - The Widening Gap: The Benefits and Harms of Generative AI for Novice Programmers [1.995977018536036]
初心者プログラマはメタ認知的認識と戦略の欠如により、しばしば問題解決に苦しむ。
多くの初心者がジェネレーティブAI(GenAI)を使ってプログラミングしている
その結果, 加速した学生と苦労した学生の間には, GenAIツールの使用が不運な部分があることが判明した。
論文 参考訳(メタデータ) (2024-05-28T01:48:28Z) - Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models [54.58108387797138]
コードインテリジェンスタスクにおける即時学習の有効性について検討する。
既存の自動プロンプト設計手法は、コードインテリジェンスタスクに限られている。
本稿では、精巧な遺伝的アルゴリズムを用いてプロンプトを自動設計する遺伝的オートプロンプト(GenAP)を提案する。
論文 参考訳(メタデータ) (2024-03-20T13:37:00Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
我々は、中核的なプログラミングコースでGenAIを効果的に活用するために、学生を指導するフレームワーク「AI-Lab」を紹介した。
GenAIの誤りを特定し、修正することで、学生は学習プロセスを充実させる。
教育者にとって、AI-Labは、学習経験におけるGenAIの役割に対する学生の認識を探索するメカニズムを提供する。
論文 参考訳(メタデータ) (2023-08-23T17:20:37Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z) - Investigating Explainability of Generative AI for Code through
Scenario-based Design [44.44517254181818]
生成AI(GenAI)技術は成熟し、ソフトウェア工学のようなアプリケーションドメインに適用されています。
私たちは43人のソフトウェアエンジニアと9つのワークショップを開催しました。そこでは、最先端のジェネレーティブAIモデルの実例を使って、ユーザの説明可能性のニーズを導き出しました。
我々の研究は、GenAIのコードに対する説明可能性の必要性を探求し、新しいドメインにおけるXAIの技術開発を人間中心のアプローチがいかに促進するかを実証する。
論文 参考訳(メタデータ) (2022-02-10T08:52:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。