論文の概要: QINNs: Quantum-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2510.17984v1
- Date: Mon, 20 Oct 2025 18:03:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:12.440992
- Title: QINNs: Quantum-Informed Neural Networks
- Title(参考訳): QINN:量子インフォームドニューラルネットワーク
- Authors: Aritra Bal, Markus Klute, Benedikt Maier, Melik Oughton, Eric Pezone, Michael Spannowsky,
- Abstract要約: 古典的なディープニューラルネットワークは、コライダーデータにおいてリッチな多粒子相関を学習することができるが、誘導バイアスが物理構造に固定されることは滅多にない。
量子情報の概念と量子オブザーバブルを純粋に古典的なモデルにもたらす一般的なフレームワークである量子インフォームドニューラルネットワーク(QINN)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Classical deep neural networks can learn rich multi-particle correlations in collider data, but their inductive biases are rarely anchored in physics structure. We propose quantum-informed neural networks (QINNs), a general framework that brings quantum information concepts and quantum observables into purely classical models. While the framework is broad, in this paper, we study one concrete realisation that encodes each particle as a qubit and uses the Quantum Fisher Information Matrix (QFIM) as a compact, basis-independent summary of particle correlations. Using jet tagging as a case study, QFIMs act as lightweight embeddings in graph neural networks, increasing model expressivity and plasticity. The QFIM reveals distinct patterns for QCD and hadronic top jets that align with physical expectations. Thus, QINNs offer a practical, interpretable, and scalable route to quantum-informed analyses, that is, tomography, of particle collisions, particularly by enhancing well-established deep learning approaches.
- Abstract(参考訳): 古典的なディープニューラルネットワークは、コライダーデータにおいてリッチな多粒子相関を学習することができるが、誘導バイアスが物理構造に固定されることは滅多にない。
量子情報の概念と量子オブザーバブルを純粋に古典的なモデルにもたらす一般的なフレームワークである量子インフォームドニューラルネットワーク(QINN)を提案する。
本稿では,各粒子を量子ビットとして符号化し,QFIM(Quantum Fisher Information Matrix)を粒子相関のコンパクトで基底非依存的な要約として利用する具体的な実現法について検討する。
ケーススタディとしてジェットタグを用いることで、QFIMはグラフニューラルネットワークの軽量な埋め込みとして機能し、モデル表現性と可塑性を増大させる。
QFIMは、QCDとハドロントップジェットの異なるパターンを明らかにし、物理的な期待と一致している。
したがって、QINNは量子インフォームド分析、すなわち、粒子衝突のトモグラフィーへの実用的な、解釈可能な、スケーラブルな経路を提供する。
関連論文リスト
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) とContinuous Time Recurrent Quantum Neural Network (CTRQNet) を開発した。
LQNetとCTRQNetは、バイナリ分類によってCIFAR 10で40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-08-28T00:56:03Z) - Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
量子物理学において、波動関数レベルで明確に定義された構造を持つ単純なデータでさえ、非常に複雑な相関によって特徴づけられる。
量子統計学を学習しながら、ニューラルネットワークの重み空間をモニタリングすることで、複雑な多部パターンに関する物理的直観を発達させることができることを示す。
この結果から,非局所パターンを用いたデータ処理のための畳み込みニューラルネットワークの構築について,新たな知見が得られた。
論文 参考訳(メタデータ) (2024-08-23T12:45:40Z) - A Comparison Between Invariant and Equivariant Classical and Quantum Graph Neural Networks [3.350407101925898]
グラフニューラルネットワーク(GNN)のような深層幾何学的手法は、高エネルギー物理学における様々なデータ解析タスクに活用されている。
典型的なタスクはジェットタグであり、ジェットは異なる特徴とそれらの構成粒子間のエッジ接続を持つ点雲と見なされる。
本稿では,古典的グラフニューラルネットワーク(GNN)と,その量子回路との公平かつ包括的な比較を行う。
論文 参考訳(メタデータ) (2023-11-30T16:19:13Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。