論文の概要: A Unified Detection Pipeline for Robust Object Detection in Fisheye-Based Traffic Surveillance
- arxiv url: http://arxiv.org/abs/2510.20016v1
- Date: Wed, 22 Oct 2025 20:38:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:16.826723
- Title: A Unified Detection Pipeline for Robust Object Detection in Fisheye-Based Traffic Surveillance
- Title(参考訳): 魚眼トラヒックサーベイランスにおけるロバスト物体検出のための統一検出パイプライン
- Authors: Neema Jakisa Owor, Joshua Kofi Asamoah, Tanner Wambui Muturi, Anneliese Jakisa Owor, Blessing Agyei Kyem, Andrews Danyo, Yaw Adu-Gyamfi, Armstrong Aboah,
- Abstract要約: 魚眼カメラは、一点から広い視野を捉えることで、広域交通監視の効率的なソリューションを提供する。
魚眼画像に固有の強い放射歪みと非均一分解能は、標準物体検出器に重大な課題をもたらす。
これらの条件下で頑健に動作するように設計された検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 7.670666668651702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fisheye cameras offer an efficient solution for wide-area traffic surveillance by capturing large fields of view from a single vantage point. However, the strong radial distortion and nonuniform resolution inherent in fisheye imagery introduce substantial challenges for standard object detectors, particularly near image boundaries where object appearance is severely degraded. In this work, we present a detection framework designed to operate robustly under these conditions. Our approach employs a simple yet effective pre and post processing pipeline that enhances detection consistency across the image, especially in regions affected by severe distortion. We train several state-of-the-art detection models on the fisheye traffic imagery and combine their outputs through an ensemble strategy to improve overall detection accuracy. Our method achieves an F1 score of0.6366 on the 2025 AI City Challenge Track 4, placing 8thoverall out of 62 teams. These results demonstrate the effectiveness of our framework in addressing issues inherent to fisheye imagery.
- Abstract(参考訳): 魚眼カメラは、一点から広い視野を捉えることで、広域交通監視の効率的なソリューションを提供する。
しかし、魚眼画像に固有の強い半径歪みと非均一分解能は、標準物体検出器、特に物体の外観が著しく劣化している画像境界付近に重大な課題をもたらす。
本研究では,これらの条件下での堅牢な動作を目的とした検出フレームワークを提案する。
提案手法では, 画像全体の検出一貫性, 特に歪みの激しい領域において, 簡易かつ効果的な前処理パイプラインと後処理パイプラインを用いる。
魚眼トラヒック画像の最先端検出モデルをいくつか学習し、アンサンブル戦略により出力を組み合わせ、全体的な検出精度を向上させる。
本手法は,2025年のAIシティチャレンジトラック4でF1スコア0.6366を達成し,62チーム中8位となった。
これらの結果から,魚眼画像に固有の課題に対処するための枠組みの有効性が示された。
関連論文リスト
- An Optimized YOLOv5 Based Approach For Real-time Vehicle Detection At Road Intersections Using Fisheye Cameras [0.13092499936969584]
リアルタイム車両検出は都市交通監視の課題である。
魚眼カメラは、広い面積をカバーし、ジャンクションでの360度ビューを提供するために、リアルタイム車両検出の目的に広く利用されている。
車両や街路灯からの光輝き、影、非線形歪み、車両のスケーリング問題、小型車両の適切な位置決めといった課題を克服するため、改良型YOLOv5物体検出方式を提案する。
論文 参考訳(メタデータ) (2025-02-06T23:42:05Z) - RoFIR: Robust Fisheye Image Rectification Framework Impervious to Optical Center Deviation [88.54817424560056]
局所歪みの度合いと方向を測定する歪みベクトルマップ(DVM)を提案する。
DVMを学習することで、大域的な歪みパターンに頼ることなく、各ピクセルの局所歪みを独立に識別することができる。
事前学習段階では、歪みベクトルマップを予測し、各画素の局所歪み特徴を知覚する。
微調整段階では、魚眼画像修正のための画素単位のフローマップを予測する。
論文 参考訳(メタデータ) (2024-06-27T06:38:56Z) - FisheyeDetNet: 360° Surround view Fisheye Camera based Object Detection System for Autonomous Driving [4.972459365804512]
物体検出は自律走行における成熟した問題であり、歩行者検出は最初に展開されたアルゴリズムの1つである。
標準的なバウンディングボックスの表現は、特に周辺部において大きな放射歪みのため、魚眼カメラでは失敗する。
我々は、回転する有界箱、楕円、ポリゴンを極弧/角表現として設計し、これらの表現を分析するためにインスタンスセグメンテーションmIOUメートル法を定義する。
提案したモデルであるPhiteeyeDetNetは他より優れており、自動走行用Valeo fisheye around-viewデータセットのmAPスコアは49.5 %である。
論文 参考訳(メタデータ) (2024-04-20T18:50:57Z) - Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets [4.170227455727819]
本研究は,魚眼レンズカメラを用いた都市交通監視システムの進化的課題について考察する。
フィッシュアイレンズは、1つのフレームで広角と全方位のカバーを提供し、変換性のあるソリューションとなる。
これらの課題に触発された本研究では,ランズフォーマーに基づく画像強調フレームワークとアンサンブル学習技術を組み合わせた新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T18:32:52Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Self-supervised Interest Point Detection and Description for Fisheye and
Perspective Images [7.451395029642832]
キーポイント検出とマッチングは多くのコンピュータビジョンにおける基本的な課題である。
本研究では,画像取得に使用されるカメラの形状が原因で発生する場合に焦点をあてる。
我々は最先端のアプローチを構築し、関心点検出器と記述子ネットワークのトレーニングを可能にする自己監督的な手順を導出する。
論文 参考訳(メタデータ) (2023-06-02T22:39:33Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
最近の6Dオブジェクトのポーズ推定方法は、最初にオブジェクト検出を使用して2Dバウンディングボックスを取得し、実際にポーズを回帰する。
本研究では,6次元ポーズ推定において対象物体が剛性であるという事実を利用した剛性認識検出手法を提案する。
このアプローチの成功の鍵となるのは可視性マップであり、これは境界ボックス内の各ピクセルとボックス境界の間の最小障壁距離を用いて構築することを提案する。
論文 参考訳(メタデータ) (2023-03-22T09:02:54Z) - Fewer is More: Efficient Object Detection in Large Aerial Images [59.683235514193505]
本稿では,検出者がより少ないパッチに注目するのに対して,より効率的な推論とより正確な結果を得るのに役立つObjectness Activation Network(OAN)を提案する。
OANを用いて、5つの検出器は3つの大規模な空中画像データセットで30.0%以上のスピードアップを取得する。
我々はOANをドライブシーン物体検出と4Kビデオ物体検出に拡張し,検出速度をそれぞれ112.1%,75.0%向上させた。
論文 参考訳(メタデータ) (2022-12-26T12:49:47Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
道路障害物検出技術は,車間距離が大きくなるにつれて障害物の見かけの規模が減少するという事実を無視することを示す。
画像位置毎に仮想物体の見かけの大きさを符号化したスケールマップを演算することでこれを活用できる。
次に、この視点マップを利用して、遠近法に対応する大きさの道路合成物体に注入することで、トレーニングデータを生成する。
論文 参考訳(メタデータ) (2022-10-04T17:48:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。