論文の概要: Approximate Model Predictive Control for Microgrid Energy Management via Imitation Learning
- arxiv url: http://arxiv.org/abs/2510.20040v1
- Date: Wed, 22 Oct 2025 21:39:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:16.917969
- Title: Approximate Model Predictive Control for Microgrid Energy Management via Imitation Learning
- Title(参考訳): 模倣学習によるマイクログリッドエネルギー管理のための近似モデル予測制御
- Authors: Changrui Liu, Shengling Shi, Anil Alan, Ganesh Kumar Venayagamoorthy, Bart De Schutter,
- Abstract要約: 本稿では,マイクログリッドエネルギー管理のための混合整数型経済モデル予測制御(EMPC)の模倣学習に基づくフレームワークを提案する。
提案手法は、ニューラルネットワークを用いて、オフライン軌道からのエキスパートEMPC制御動作を模倣し、最適化問題をオンラインで解決することなく、高速でリアルタイムな意思決定を可能にする。
- 参考スコア(独自算出の注目度): 9.044455355747482
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient energy management is essential for reliable and sustainable microgrid operation amid increasing renewable integration. This paper proposes an imitation learning-based framework to approximate mixed-integer Economic Model Predictive Control (EMPC) for microgrid energy management. The proposed method trains a neural network to imitate expert EMPC control actions from offline trajectories, enabling fast, real-time decision making without solving optimization problems online. To enhance robustness and generalization, the learning process includes noise injection during training to mitigate distribution shift and explicitly incorporates forecast uncertainty in renewable generation and demand. Simulation results demonstrate that the learned policy achieves economic performance comparable to EMPC while only requiring $10\%$ of the computation time of optimization-based EMPC in practice.
- Abstract(参考訳): 再生可能エネルギー化が進む中, 信頼性と持続的なマイクログリッド運用にはエネルギー管理の効率化が不可欠である。
本稿では,マイクログリッドエネルギー管理のための混合整数型経済モデル予測制御(EMPC)の模倣学習に基づくフレームワークを提案する。
提案手法は、ニューラルネットワークを用いて、オフライン軌道からのエキスパートEMPC制御動作を模倣し、最適化問題をオンラインで解決することなく、高速でリアルタイムな意思決定を可能にする。
堅牢性と一般化を高めるために、学習プロセスは、分散シフトを緩和し、再生可能生成および需要における予測不確実性を明示的に組み込む訓練中のノイズ注入を含む。
シミュレーションの結果,EMPCに匹敵する経済性能を達成できる一方で,実際に最適化ベースのEMPCの計算時間を10倍程度しか必要としないことがわかった。
関連論文リスト
- A Reinforcement Learning Approach for Optimal Control in Microgrids [43.122212629962235]
マイクログリッドは、エネルギー発生、貯蔵、分散に対する局所的な制御を可能にすることで、有望なソリューションを提供する。
本稿では,マイクログリッドエネルギー管理を最適化するための新しい強化学習手法を提案する。
論文 参考訳(メタデータ) (2025-06-28T20:10:00Z) - Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
本稿では,動的負荷スケジューリングの課題に対処する強化学習(RL)手法を提案する。
提案手法は実時間負荷スケジューリングのためのロバストでスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-23T09:16:22Z) - Efficient Data-Driven MPC for Demand Response of Commercial Buildings [0.0]
小型商業ビルにおけるエネルギー管理のためのデータ駆動型・混合整数入札戦略を提案する。
屋上ユニットの暖房, 個別制御による空調システムについて検討し, 商業ビルの運転を正確にモデル化する。
当社のアプローチをいくつかの需要応答(DR)設定に適用する。
論文 参考訳(メタデータ) (2024-01-28T20:01:44Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
本研究では, (e)NMPCの一部として最適性能を示すために, Koopman シュロゲートモデルの強化学習法を提案する。
エンドツーエンドトレーニングモデルは,(e)NMPCにおけるシステム識別を用いてトレーニングしたモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-03T10:21:53Z) - A Reinforcement Learning-based Economic Model Predictive Control
Framework for Autonomous Operation of Chemical Reactors [0.5735035463793008]
本研究では,非線形系のオンラインモデルパラメータ推定のためのEMPCとRLを統合するための新しいフレームワークを提案する。
最先端のRLアルゴリズムとEMPCスキームを最小限の修正で使用できます。
論文 参考訳(メタデータ) (2021-05-06T13:34:30Z) - Strictly Batch Imitation Learning by Energy-based Distribution Matching [104.33286163090179]
すなわち、強化信号へのアクセスがなく、遷移力学の知識がなく、環境とのさらなる相互作用もない。
1つの解決策は、既存のアルゴリズムをオフライン環境で動作させるために、見習いの学習に適合させることである。
しかし、このようなアプローチは、政治外の評価やオフラインモデルの推定に大きく依存しており、間接的で非効率である可能性がある。
優れたソリューションは、ポリシーを明示的にパラメータ化し、ロールアウトダイナミクスから暗黙的に学習し、完全にオフラインで運用できるべきだ、と私たちは主張する。
論文 参考訳(メタデータ) (2020-06-25T03:27:59Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。