論文の概要: Epistemic Deference to AI
- arxiv url: http://arxiv.org/abs/2510.21043v1
- Date: Thu, 23 Oct 2025 22:55:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 09:00:15.33789
- Title: Epistemic Deference to AI
- Title(参考訳): AIへの疫学的言及
- Authors: Benjamin Lange,
- Abstract要約: AIシステムの中には、人工てんかん(AEA)がある、と私は主張する。
AEAは、ユーザの独立したてんかんに対する完全な代替ではなく、貢献的な理由として機能すべきである。
実際には要求されているが、このアカウントはAIの推論が正当化されるタイミングを決定するための原則化された方法を提供する。
- 参考スコア(独自算出の注目度): 0.01692139688032578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When should we defer to AI outputs over human expert judgment? Drawing on recent work in social epistemology, I motivate the idea that some AI systems qualify as Artificial Epistemic Authorities (AEAs) due to their demonstrated reliability and epistemic superiority. I then introduce AI Preemptionism, the view that AEA outputs should replace rather than supplement a user's independent epistemic reasons. I show that classic objections to preemptionism - such as uncritical deference, epistemic entrenchment, and unhinging epistemic bases - apply in amplified form to AEAs, given their opacity, self-reinforcing authority, and lack of epistemic failure markers. Against this, I develop a more promising alternative: a total evidence view of AI deference. According to this view, AEA outputs should function as contributory reasons rather than outright replacements for a user's independent epistemic considerations. This approach has three key advantages: (i) it mitigates expertise atrophy by keeping human users engaged, (ii) it provides an epistemic case for meaningful human oversight and control, and (iii) it explains the justified mistrust of AI when reliability conditions are unmet. While demanding in practice, this account offers a principled way to determine when AI deference is justified, particularly in high-stakes contexts requiring rigorous reliability.
- Abstract(参考訳): 人間の専門家による判断よりもAIの出力をいつ延期すべきか?
社会認識学における最近の研究に基づき、いくつかのAIシステムは、信頼性とてんかんの優位性を示すことから、人工てんかん権威(AEA)の資格を付与するという考えを動機づける。
AIプリエンプティシズム(AI Preemptionism)は、AEAのアウトプットが、ユーザの独立性てんかんの原因を補うのではなく、置き換えるべきである、という考え方です。
先天観念論に対する古典的な反対、例えば、非クリティカルな軽蔑、てんかんのエントレンチ、そして無意味なてんかんの基盤は、それらの不透明さ、自己回復の権威、およびてんかんの障害マーカーの欠如を考慮し、AEAに増幅された形で適用されることを示します。
これに対して私は、より有望な代替手段、つまり、AIの推論に関する完全なエビデンスビューを開発しています。
この見解によれば、AEAのアウトプットは、ユーザの独立性てんかんに対する完全な置き換えではなく、コントリビュータの理由として機能すべきである。
このアプローチには3つの大きな利点があります。
一 利用者の関与を保ち、専門性萎縮を緩和すること。
(二)有意義な人間の監視及び統制のための疫学的ケースを提供し、
(3)信頼性条件が不適当である場合、AIの正当化された不信を説明する。
このアカウントは実際には要求されているが、特に厳格な信頼性を必要とする高い状況において、AI推論が正当化されるタイミングを決定するための原則化された方法を提供する。
関連論文リスト
- Engaging with AI: How Interface Design Shapes Human-AI Collaboration in High-Stakes Decision-Making [8.948482790298645]
各種意思決定支援機構がユーザエンゲージメント,信頼,人間とAIの協調タスクパフォーマンスに与える影響について検討する。
その結果,AIの信頼性レベルやテキスト説明,パフォーマンス視覚化などのメカニズムにより,人間とAIの協調作業性能が向上することが判明した。
論文 参考訳(メタデータ) (2025-01-28T02:03:00Z) - How Performance Pressure Influences AI-Assisted Decision Making [52.997197698288936]
我々は、プレッシャーと説明可能なAI(XAI)技術がAIアドバイステイク行動とどのように相互作用するかを示す。
我々の結果は、圧力とXAIの異なる組み合わせで複雑な相互作用効果を示し、AIアドバイスの行動を改善するか、悪化させるかのどちらかを示す。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
最適な人間とAIのコラボレーションのためのビジョンは、人間のAIシステムへの「適切な依存」を必要とする。
実際には、アウト・オブ・ディストリビューションデータにおける機械学習モデルの性能格差は、データセット固有のパフォーマンスフィードバックを信頼できないものにしている。
論文 参考訳(メタデータ) (2024-09-22T09:43:27Z) - Hype, Sustainability, and the Price of the Bigger-is-Better Paradigm in AI [67.58673784790375]
AIパラダイムは、科学的に脆弱なだけでなく、望ましくない結果をもたらすものだ、と私たちは主張する。
第一に、効率の改善にもかかわらず、その計算要求はモデルの性能よりも速く増加するため、持続可能ではない。
第二に、健康、教育、気候などの重要な応用は別として、他人を犠牲にして特定の問題に焦点をあてることである。
論文 参考訳(メタデータ) (2024-09-21T14:43:54Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
これは、数学的推論に倫理的考察をもたらす重要な方法であると主張する。
我々は、2021年12月のOmicron型COVID-19の拡散について、英国政府に助言するために使用される競合モデルの文脈内でこれらのアイデアを実証する。
論文 参考訳(メタデータ) (2023-09-11T15:13:36Z) - HiTZ@Antidote: Argumentation-driven Explainable Artificial Intelligence
for Digital Medicine [7.089952396422835]
AntiDOTEは、ディープラーニングプロセスの低レベル特性と人間の議論能力に適した高レベルスキームが組み合わされる、説明可能なAIという統合的なビジョンを育む。
プロジェクトの最初の成果として、Antidote CasiMedicosデータセットを公開し、一般に説明可能なAIの研究、特に医療分野における議論を促進する。
論文 参考訳(メタデータ) (2023-06-09T16:50:02Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making [4.877174544937129]
AIによる意思決定支援ツールによってサポートされる人々は、しばしばAIに過度に依存します。
AIの決定に説明を加えることは、過度な信頼を減らすものではありません。
我々の研究は、人間の認知モチベーションが説明可能なAIソリューションの有効性を損なうことを示唆している。
論文 参考訳(メタデータ) (2021-02-19T00:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。