論文の概要: Semi-supervised Vertex Hunting, with Applications in Network and Text Analysis
- arxiv url: http://arxiv.org/abs/2510.22526v1
- Date: Sun, 26 Oct 2025 04:26:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 17:41:21.971569
- Title: Semi-supervised Vertex Hunting, with Applications in Network and Text Analysis
- Title(参考訳): 半教師付き頂点探索とネットワークとテキスト解析への応用
- Authors: Yicong Jiang, Zheng Tracy Ke,
- Abstract要約: そこで我々は,データポイントの偏心座標の形で部分情報を利用できる,新たな変種半教師付きハンティング(SSVH)を提案する。
我々は,SSVHを,半教師付きネットワーク混合メンバーシップ推定と半教師付きトピックモデリングの2つの実践的な設定に適用し,効率よくスケーラブルなアルゴリズムを実現する。
- 参考スコア(独自算出の注目度): 5.314043336774377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vertex hunting (VH) is the task of estimating a simplex from noisy data points and has many applications in areas such as network and text analysis. We introduce a new variant, semi-supervised vertex hunting (SSVH), in which partial information is available in the form of barycentric coordinates for some data points, known only up to an unknown transformation. To address this problem, we develop a method that leverages properties of orthogonal projection matrices, drawing on novel insights from linear algebra. We establish theoretical error bounds for our method and demonstrate that it achieves a faster convergence rate than existing unsupervised VH algorithms. Finally, we apply SSVH to two practical settings, semi-supervised network mixed membership estimation and semi-supervised topic modeling, resulting in efficient and scalable algorithms.
- Abstract(参考訳): Vertex Hunt(VH)は、ノイズの多いデータポイントから単純度を推定するタスクであり、ネットワークやテキスト分析などの分野で多くの応用がある。
本稿では,変種である半教師付き頂点探索(SSVH)を導入し,いくつかのデータポイントに対する偏心座標の形で部分的な情報が得られることを示した。
この問題に対処するため,直交射影行列の性質を活用する手法を開発し,線形代数から新たな洞察を導き出す。
提案手法の理論的誤差境界を確立し,既存の教師なしVHアルゴリズムよりも高速な収束率を実現することを示す。
最後に、SSVHを半教師付きネットワーク混合メンバーシップ推定と半教師付きトピックモデリングの2つの実践的な設定に適用し、効率よくスケーラブルなアルゴリズムを実現する。
関連論文リスト
- Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
我々は、回転、スケーリング、せん断、翻訳を含む入力画像の幾何学的変換に対するニューラルネットワークの検証の問題に対処する。
提案手法は, 分枝・分枝リプシッツと組み合わせたサンプリングおよび線形近似を用いて, 画素値に対する楽音線形制約を求める。
提案手法では,既存の手法よりも最大32%の検証ケースが解決されている。
論文 参考訳(メタデータ) (2024-08-23T15:02:09Z) - Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSCは、既存のアプローチで一般的に見られる高い計算複雑性に対する新しいソリューションである。
この手法は、各データポイントを選択されたランドマークの疎線型結合として表現し、すべてのビューにまたがるコンセンサスアンカーグラフを生成する。
FSSMSCの有効性と効率は、様々なスケールの複数のベンチマークデータセットに対する広範な実験を通して検証される。
論文 参考訳(メタデータ) (2024-08-11T06:54:00Z) - Robust Online Learning over Networks [1.0249620437941]
この作業は、分散学習に固有のいくつかの一般的な課題を特に対象とする。
マルチプライヤの交互方向法(ADMM)の分散演算子理論(DOT)版を適用した。
DOT-ADMM演算子が計量部分正則であれば、凸学習問題のクラスに対する線形率に収束する。
論文 参考訳(メタデータ) (2023-09-01T15:18:05Z) - Tackling Data Heterogeneity: A New Unified Framework for Decentralized
SGD with Sample-induced Topology [6.6682038218782065]
我々は,経験的リスク最小化問題に対して,勾配に基づく最適化手法を統一する汎用フレームワークを開発した。
本稿では,SAGA,Local-SVRG,GT-SAGAなどの分散還元(VR)および勾配追跡(GT)手法の統一的な視点を提供する。
その結果、VRとGTの手法は、それぞれデバイス内およびデバイス間のデータを効果的に排除し、アルゴリズムを最適解に正確に収束させることができることがわかった。
論文 参考訳(メタデータ) (2022-07-08T07:50:08Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
我々はMixed Graph Contrastive Network(MGCN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
本研究では,非摂動増強戦略と相関還元機構により,潜伏埋め込みの識別能力を向上する。
これら2つの設定を組み合わせることで、識別表現学習のために、豊富なノードと稀に価値あるラベル付きノードの両方から、豊富な監視情報を抽出する。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
大規模凸凹型ミニマックス問題は、ゲーム理論、堅牢なトレーニング、生成的敵ネットワークのトレーニングなど、多くの応用で発生する。
通信効率のよい分散外グレードアルゴリズムであるLocalAdaSientを開発した。
サーバモデル。
等質な環境と異質な環境の両方において,その有効性を実証する。
論文 参考訳(メタデータ) (2021-06-18T09:42:05Z) - Analysis of Truncated Orthogonal Iteration for Sparse Eigenvector
Problems [78.95866278697777]
本研究では,多元的固有ベクトルを分散制約で同時に計算するTruncated Orthogonal Iterationの2つの変種を提案する。
次に,我々のアルゴリズムを適用して,幅広いテストデータセットに対するスパース原理成分分析問題を解く。
論文 参考訳(メタデータ) (2021-03-24T23:11:32Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Fast local linear regression with anchor regularization [21.739281173516247]
高速アンカー正規化局所線形法(FALL)と呼ばれる,単純で効果的な局所モデルトレーニングアルゴリズムを提案する。
合成および実世界のデータセットの実験を通じて、FALLは最先端のネットワークLassoアルゴリズムと精度の面で好適に比較できることを示した。
論文 参考訳(メタデータ) (2020-02-21T10:03:33Z) - Seismic horizon detection with neural networks [62.997667081978825]
本稿では,複数の実地震立方体上での地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
本研究の主な貢献は,複数実地震立方体における地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
論文 参考訳(メタデータ) (2020-01-10T11:30:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。