論文の概要: Unsupervised Detection of Post-Stroke Brain Abnormalities
- arxiv url: http://arxiv.org/abs/2510.24398v1
- Date: Tue, 28 Oct 2025 13:13:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 15:35:37.191029
- Title: Unsupervised Detection of Post-Stroke Brain Abnormalities
- Title(参考訳): ストローク後脳異常の教師なし検出
- Authors: Youwan Mahé, Elise Bannier, Stéphanie Leplaideur, Elisa Fromont, Francesca Galassi,
- Abstract要約: ストローク後患者の焦点異常および非順序異常の教師なし検出のためのフローベース生成モデルであるREFLECTを評価した。
脳卒中患者の病変のないスライス(ATLAS)と健康管理(IXI)の2つのモデルを用いてトレーニングデータの有効性を検証した。
ATLAS 試験対象では, IXI 訓練モデルにより病変のセグメンテーションが向上し, 非病変異常に対する感受性が向上した。
- 参考スコア(独自算出の注目度): 0.8373057326694192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-stroke MRI not only delineates focal lesions but also reveals secondary structural changes, such as atrophy and ventricular enlargement. These abnormalities, increasingly recognised as imaging biomarkers of recovery and outcome, remain poorly captured by supervised segmentation methods. We evaluate REFLECT, a flow-based generative model, for unsupervised detection of both focal and non-lesional abnormalities in post-stroke patients. Using dual-expert central-slice annotations on ATLAS data, performance was assessed at the object level with Free-Response ROC analysis for anomaly maps. Two models were trained on lesion-free slices from stroke patients (ATLAS) and on healthy controls (IXI) to test the effect of training data. On ATLAS test subjects, the IXI-trained model achieved higher lesion segmentation (Dice = 0.37 vs 0.27) and improved sensitivity to non-lesional abnormalities (FROC = 0.62 vs 0.43). Training on fully healthy anatomy improves the modelling of normal variability, enabling broader and more reliable detection of structural abnormalities.
- Abstract(参考訳): 後ストロークMRIでは焦点病変だけでなく、萎縮や心室拡張などの二次的構造変化も指摘されている。
これらの異常は、回復と結果のイメージングバイオマーカーとしてますます認識されつつあり、教師付きセグメンテーション法では未発見のままである。
ストローク後患者の焦点異常および非順序異常の教師なし検出のためのフローベース生成モデルであるREFLECTを評価した。
ATLASデータに対するデュアルエキスパート中央スライスアノテーションを用いて、異常マップに対する自由応答ROC解析を用いてオブジェクトレベルでの性能を評価した。
脳卒中患者の病変のないスライス(ATLAS)と健康管理(IXI)の2つのモデルを用いてトレーニングデータの有効性を検証した。
ATLAS試験対象では、IXI訓練モデルにより病変のセグメンテーション(Dice = 0.37 vs 0.27)が向上し、非順序異常(FROC = 0.62 vs 0.43)に対する感受性が向上した。
完全に健全な解剖学の訓練は、正常な変動のモデリングを改善し、より広くより信頼性の高い構造異常の検出を可能にする。
関連論文リスト
- SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
選択的脊椎手術における滞在時間(LOS)予測のための機械学習モデルの開発と評価を行った。
我々は,従来のMLモデルと,マスク付き双方向長短期記憶(BiLSTM)であるオペレーショナルLSTMを比較した。
決定係数(R2)を用いて性能を評価し,説明可能なAIを用いて鍵予測器を同定した。
論文 参考訳(メタデータ) (2025-07-15T01:18:28Z) - Machine Learning-Based Quantification of Vesicoureteral Reflux with Enhancing Accuracy and Efficiency [0.0]
VUR(Vesicoureteral reflux)は、伝統的に主観評価システムを用いて評価される。
本研究では,VCUG(Volting cystourethrogram)画像の解析により,機械学習による診断整合性の向上について検討した。
論文 参考訳(メタデータ) (2025-06-13T07:09:12Z) - Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models [13.970483987621135]
本研究では、健康な画像に対して自己教師付きコントラストエンコーダを訓練することにより、再建品質を改善するための教師なしフレームワークを提案する。
これらの特徴は、拡散モデルを用いて、与えられた画像の健全な外観を再構成し、画素ワイド比較による解釈可能な異常な局所化を可能にする。
論文 参考訳(メタデータ) (2024-06-02T15:19:07Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - Diffusion Models with Implicit Guidance for Medical Anomaly Detection [13.161402789616004]
組織再生のための時間的調和 (THOR) は, 病態の影響を受けない領域における健全な組織の整合性を維持することを目的としている。
相対的な評価では、THORは、脳MRIと手首X線における異常の検出とセグメンテーションにおいて、既存の拡散に基づく手法を超越している。
論文 参考訳(メタデータ) (2024-03-13T12:26:55Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) は、正常なトレーニング分布から異常を外れ値として識別することを目的としている。
生成モデルは、与えられた入力画像に対する健康な脳解剖の再構築を学ぶために使用される。
本稿では,入力画像の潜在表現から得られた付加情報を用いて拡散モデルの復調過程を条件付けることを提案する。
論文 参考訳(メタデータ) (2023-12-07T11:03:42Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
本稿では,脳腫瘍の検出とセグメンテーションを改善するための2段階生成モデル(TSGM)を提案する。
CycleGANは、未ペアデータに基づいてトレーニングされ、データとして正常な画像から異常な画像を生成する。
VE-JPは、合成対の異常画像をガイドとして使用して、健康な画像の再構成を行う。
論文 参考訳(メタデータ) (2023-11-06T12:58:26Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。