論文の概要: Graph Distance Based on Cause-Effect Estimands with Latents
- arxiv url: http://arxiv.org/abs/2510.25037v1
- Date: Tue, 28 Oct 2025 23:38:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.879867
- Title: Graph Distance Based on Cause-Effect Estimands with Latents
- Title(参考訳): 潜伏者による因果効果推定に基づくグラフ距離
- Authors: Zhufeng Li, Niki Kilbertus,
- Abstract要約: 本研究では,非周期有向混合グラフ(ADMG)に対するグラフ距離測定法を提案する。
異なるグラフ摂動の下で測定値の挙動を解析し,既存の距離測定値と比較する。
- 参考スコア(独自算出の注目度): 9.762906025971565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery aims to recover graphs that represent causal relations among given variables from observations, and new methods are constantly being proposed. Increasingly, the community raises questions about how much progress is made, because properly evaluating discovered graphs remains notoriously difficult, particularly under latent confounding. We propose a graph distance measure for acyclic directed mixed graphs (ADMGs) based on the downstream task of cause-effect estimation under unobserved confounding. Our approach uses identification via fixing and a symbolic verifier to quantify how graph differences distort cause-effect estimands for different treatment-outcome pairs. We analyze the behavior of the measure under different graph perturbations and compare it against existing distance metrics.
- Abstract(参考訳): 因果発見は、与えられた変数間の因果関係を表すグラフを観測から回収することを目的としており、新しい手法が常に提案されている。
発見されたグラフを適切に評価することは、特に潜伏したコンファウンディングの下では、非常に難しいため、コミュニティは進歩の度合いについて疑問を呈する。
本研究では,非周期有向混合グラフ(ADMG)に対するグラフ距離測定法を提案する。
提案手法では,修正による同定とシンボル検証を用いて,異なる処理・出力ペアに対して,グラフ差が原因・影響推定をどのように歪曲するかを定量化する。
異なるグラフ摂動の下で測定値の挙動を解析し,既存の距離測定値と比較する。
関連論文リスト
- Separation-based distance measures for causal graphs [15.37737222790121]
最先端因果探索法は単一の因果グラフを出力するのではなく、それらの等価クラス(MEC)を出力する。
本稿では,分離距離の差が評価に適さないような距離の付加的な測定法を提案する。
我々は,既存の比較指標の違いを明らかにする実験と,おもちゃの例を用いて理論的解析を補完する。
論文 参考訳(メタデータ) (2024-02-07T15:36:53Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
この研究は、メカニズムのスパーシティ正則化(英語版)と呼ばれる、アンタングルメントの新たな原理を導入する。
本稿では,潜在要因を同時に学習することで,絡み合いを誘発する表現学習手法を提案する。
学習した因果グラフをスパースに規則化することにより、潜伏因子を復元できることを示す。
論文 参考訳(メタデータ) (2024-01-10T02:38:21Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
本稿では,グラフアテンションネットワークのための汎用正規化フレームワークであるCARを紹介する。
メソッド名は、グラフ接続に対するアクティブ介入の因果効果とアテンションメカニズムを一致させる。
ソーシャル・メディア・ネットワーク規模のグラフでは、CAR誘導グラフ再構成アプローチにより、グラフの畳み込み手法のスケーラビリティとグラフの注意力の向上を両立させることができる。
論文 参考訳(メタデータ) (2022-10-20T01:29:10Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
離散性に基づく自己監督型LeArning(D-SLA)と呼ばれる原図と摂動グラフの正確な相違を学習することを目的としたフレームワークを提案する。
本稿では,分子特性予測,タンパク質機能予測,リンク予測タスクなど,グラフ関連下流タスクにおける本手法の有効性を検証する。
論文 参考訳(メタデータ) (2022-02-07T08:04:59Z) - Joint inference of multiple graphs with hidden variables from stationary
graph signals [19.586429684209843]
本稿では,隠れ変数の影響をモデル化した共同グラフトポロジ推論手法を提案する。
観測された信号が探索グラフ上で定常であるという仮定の下で、複数ネットワークの合同推定により、そのような関係を利用することができる。
論文 参考訳(メタデータ) (2021-10-05T21:31:36Z) - Deconfounded Score Method: Scoring DAGs with Dense Unobserved
Confounding [101.35070661471124]
本研究では,観測データ分布に特徴的フットプリントが残っており,突発的・因果的影響を解消できることを示す。
汎用ソルバで実装し,高次元問題へのスケールアップが可能なスコアベース因果検出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T11:07:59Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
半単純グラフ変分自動エンコーダを用いて,低次元グラフ潜在表現における高次統計量を取得する。
我々は、階層構造を示すグラフを効率的に表現するために、ポインケア埋め込みを通して潜在空間に双曲幾何学を組み込む。
論文 参考訳(メタデータ) (2020-10-31T05:48:34Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。