論文の概要: Auto3DSeg for Brain Tumor Segmentation from 3D MRI in BraTS 2023 Challenge
- arxiv url: http://arxiv.org/abs/2510.25058v1
- Date: Wed, 29 Oct 2025 00:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:44.890928
- Title: Auto3DSeg for Brain Tumor Segmentation from 3D MRI in BraTS 2023 Challenge
- Title(参考訳): BraTS 2023チャレンジにおける3次元MRIからの脳腫瘍分離のためのAuto3DSeg
- Authors: Andriy Myronenko, Dong Yang, Yufan He, Daguang Xu,
- Abstract要約: monAIのAuto3DSegを使って、BraTS 2023の課題クラスタに対するソリューションを説明します。
脳転移、脳髄膜腫、BraTS-Africaの3つの課題で第1位を獲得し、残りの2つの課題:成人と小児のグリオーマの課題で第2位となった。
- 参考スコア(独自算出の注目度): 9.6741003102111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we describe our solution to the BraTS 2023 cluster of challenges using Auto3DSeg from MONAI. We participated in all 5 segmentation challenges, and achieved the 1st place results in three of them: Brain Metastasis, Brain Meningioma, BraTS-Africa challenges, and the 2nd place results in the remaining two: Adult and Pediatic Glioma challenges.
- Abstract(参考訳): 本稿では、monAIのAuto3DSegを用いて、BraTS 2023の課題クラスタに対するソリューションについて述べる。
脳転移、脳髄膜腫、BraTS-Africaの3つの課題で第1位を獲得し、残りの2つの課題:成人と小児のグリオーマの課題で第2位となった。
関連論文リスト
- Overview of AI-Debater 2023: The Challenges of Argument Generation Tasks [62.443665295250035]
第2023回中国影響コンピューティング会議(CCAC 2023)におけるAI-Debater 2023チャレンジの結果を提示する。
合計で32のチームがチャレンジに登録し、そこから11の応募をもらいました。
論文 参考訳(メタデータ) (2024-07-20T10:13:54Z) - Advanced Tumor Segmentation in Medical Imaging: An Ensemble Approach for BraTS 2023 Adult Glioma and Pediatric Tumor Tasks [0.8184931154670512]
本研究はBraTS 2023の課題である成人グリオーマと小児腫瘍の2つの異なる課題の文脈における腫瘍の分節化方法について概説する。
本手法では,2つのエンコーダデコーダベースのCNNモデル,すなわちSegResNetとMedNeXtを用いて腫瘍の3つの領域を分割する。
提案手法は,BraTS 2023アダルトグリオーマチャレンジでは平均0.8313点,Dice 36.38点,HD95点の3位となる。
論文 参考訳(メタデータ) (2024-03-14T10:37:41Z) - Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023
Challenge [11.820386742605539]
我々は2023年のKidney and Kidney tumor Challenge(KiTS)に応募した。
我々の解は0.835のディスと0.723のサーフェスを達成し、KiTS 2023チャレンジで優勝した。
論文 参考訳(メタデータ) (2023-10-06T09:20:22Z) - The STOIC2021 COVID-19 AI challenge: applying reusable training
methodologies to private data [60.94672667514737]
本研究は、プライベートデータ上でのトレーニングソリューションを可能にするType Three (T3)チャレンジフォーマットを実装した。
T3では、チャレンジオーガナイザが参加者の提供するトレーニングデータに基づいてトレーニングを行う。
勝利解は、重篤なCOVID-19と非重症なCOVID-19(0.815)の鑑別のために、受信機動作特性曲線の下にある領域を得た。
論文 参考訳(メタデータ) (2023-06-18T05:48:28Z) - The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting [50.01582455004711]
脳腫瘍患者の場合、画像取得の時系列は通常、すでに病理的なスキャンから始まる。
多くのアルゴリズムは、健康な脳を分析し、病変を特徴とする画像の保証を提供しないように設計されている。
例えば、脳解剖学のパーセレーション、組織セグメンテーション、脳抽出のアルゴリズムがある。
そこで参加者は、損傷した脳から健康な脳スキャンを合成するための塗装技術を探る。
論文 参考訳(メタデータ) (2023-05-15T20:17:03Z) - Automated ischemic stroke lesion segmentation from 3D MRI [8.52488593202588]
Ischemic Stroke Lesion Challenge (ISLES 2022)は、研究者がソリューションを3D MRIから虚血脳梗塞領域の3Dセグメンテーションと比較するためのプラットフォームを提供する。
我々は、すべての画像を共通の解像度に再サンプリングし、2つのMRIモード(DWIとADC)を使用し、MONAIからSegResNetセマンティックセマンティックセグメンテーションネットワークを訓練する。
論文 参考訳(メタデータ) (2022-09-20T08:21:57Z) - NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and
Results [116.8625268729599]
NTIREの課題は、標準的なバイコビック劣化下でのステレオ画像超解像問題を目的とした1トラックである。
合計238人の参加者が登録され、21チームが最終テストフェーズに出場した。
この課題はステレオ画像SRの新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2022-04-20T02:55:37Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
当社のH2NF-Netは、単一およびカスケードのHNF-Netを使用して、異なる脳腫瘍サブリージョンを分割します。
我々は、マルチモーダル脳腫瘍チャレンジ(BraTS)2020データセットでモデルをトレーニングし、評価した。
提案手法は,80名近い参加者のうち,brats 2020チャレンジセグメンテーションタスクで2位となった。
論文 参考訳(メタデータ) (2020-12-30T20:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。