論文の概要: A Multi-tiered Human-in-the-loop Approach for Interactive School Mapping Using Earth Observation and Machine Learning
- arxiv url: http://arxiv.org/abs/2510.27460v1
- Date: Fri, 31 Oct 2025 13:15:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:16.108113
- Title: A Multi-tiered Human-in-the-loop Approach for Interactive School Mapping Using Earth Observation and Machine Learning
- Title(参考訳): 地球観測と機械学習を用いた対話型学校マッピングのための多層ヒューマン・イン・ザ・ループアプローチ
- Authors: Casper Fibaek, Abi Riley, Kelsey Doerksen, Do-Hyung Kim, Rochelle Schneider,
- Abstract要約: 本稿では,対話型スクールマッピングのための多層ヒューマン・イン・ザ・ループ・フレームワークを提案する。
発展途上国における教育機関記録の正確性と完全性の向上を目的としている。
- 参考スコア(独自算出の注目度): 2.0898079211815452
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a multi-tiered human-in-the-loop framework for interactive school mapping designed to improve the accuracy and completeness of educational facility records, particularly in developing regions where such data may be scarce and infrequently updated. The first tier involves a machine learning based analysis of population density, land cover, and existing infrastructure compared with known school locations. The first tier identifies potential gaps and "mislabelled" schools. In subsequent tiers, medium-resolution satellite imagery (Sentinel-2) is investigated to pinpoint regions with a high likelihood of school presence, followed by the application of very high-resolution (VHR) imagery and deep learning models to generate detailed candidate locations for schools within these prioritised areas. The medium-resolution approach was later removed due to insignificant improvements. The medium and VHR resolution models build upon global pre-trained steps to improve generalisation. A key component of the proposed approach is an interactive interface to allow human operators to iteratively review, validate, and refine the mapping results. Preliminary evaluations indicate that the multi-tiered strategy provides a scalable and cost-effective solution for educational infrastructure mapping to support planning and resource allocation.
- Abstract(参考訳): 本稿では,教育機関の記録の正確さと完全性を改善するために,対話型スクールマッピングのための多層型ヒューマン・イン・ザ・ループ・フレームワークを提案する。
最初の階層は、既知の学校の場所と比較して人口密度、土地被覆、および既存のインフラの機械学習に基づく分析である。
第1階層は潜在的なギャップと「誤解された」学校を特定する。
その後の層では、高解像度衛星画像(Sentinel-2)を学校の存在可能性の高いピンポイント領域に対して調査し、続いて超高解像度(VHR)画像と深層学習モデルを用いて、これらの優先領域内の学校の詳細な候補位置を生成する。
中分解能のアプローチは、後に重要な改善のために取り除かれた。
中間分解能モデルとVHR分解能モデルは、一般化を改善するために、グローバルな事前訓練されたステップの上に構築される。
提案手法の鍵となるコンポーネントは、人間オペレーターが反復的にマッピング結果のレビュー、検証、洗練を可能にするインタラクティブインタフェースである。
予備評価は、多層戦略が、計画と資源配分をサポートするための教育インフラマッピングのためのスケーラブルで費用対効果の高いソリューションを提供することを示している。
関連論文リスト
- Rethinking Evaluation of Infrared Small Target Detection [105.59753496831739]
本稿では,画素レベルと目標レベルのパフォーマンスを取り入れたハイブリッドレベルのメトリクスを導入し,システム的エラー解析手法を提案し,クロスデータセット評価の重要性を強調した。
標準化されたベンチマークを容易にするオープンソースツールキットがリリースされた。
論文 参考訳(メタデータ) (2025-09-21T02:45:07Z) - Object Affordance Recognition and Grounding via Multi-scale Cross-modal Representation Learning [64.32618490065117]
Embodied AIの中核的な問題は、人間がしているように、観察からオブジェクト操作を学ぶことだ。
本稿では,3D表現の可利用性を学習し,段階的推論戦略を採用する新しい手法を提案する。
提案手法の有効性を実証し,アベイランスグラウンドと分類の両面での性能向上を示した。
論文 参考訳(メタデータ) (2025-08-02T04:14:18Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
オーバーヘッド画像は、コミュニティ情報が不足しているギャップを埋めるのに役立つ。
機械学習とコンピュータビジョンの最近の進歩により、画像データのパターンから素早く特徴を抽出し、検出することが可能になった。
本研究では, 人口密度, 中央値世帯所得, 教育達成率の2つのアプローチ, 教師付き畳み込みニューラルネットワークと半教師付きクラスタリングについて検討する。
論文 参考訳(メタデータ) (2023-09-28T19:30:26Z) - Deep Learning for Human Parsing: A Survey [54.812353922568995]
本研究では,人間の意味解析の先駆的な研究の幅広い範囲を網羅する,最先端の人間の構文解析手法の解析を行う。
1) 構造駆動型アーキテクチャは,人体の異なる部分と固有の階層構造を生かし,(2) グラフベースのネットワークは,効率的で完全な人体分析を実現するためにグローバルな情報を捉え,(3) コンテキスト認識ネットワークは,対応するクラスのピクセルを特徴付けるために,すべてのピクセルにわたって有用なコンテキストを探索し,(4) LSTMベースの手法は,短距離と長距離空間の依存関係を結合して,豊富な局所的・グローバルなコンテキストをうまく活用することができる。
論文 参考訳(メタデータ) (2023-01-29T10:54:56Z) - BEVBert: Multimodal Map Pre-training for Language-guided Navigation [75.23388288113817]
視覚・言語ナビゲーション(VLN)における空間認識型マップベース事前学習パラダイムを提案する。
我々は,グローバルなトポロジカルマップにおけるナビゲーション依存性をモデル化しながら,不完全な観測を明示的に集約し,重複を取り除くための局所距離マップを構築した。
ハイブリッドマップをベースとして,マルチモーダルマップ表現を学習するための事前学習フレームワークを考案し,空間認識型クロスモーダル推論を強化し,言語誘導ナビゲーションの目標を導出する。
論文 参考訳(メタデータ) (2022-12-08T16:27:54Z) - Point-Level Region Contrast for Object Detection Pre-Training [147.47349344401806]
本稿では,物体検出作業のための自己教師付き事前学習手法である点レベル領域コントラストを提案する。
提案手法は,異なる領域から個々の点対を直接抽出することにより,コントラスト学習を行う。
領域ごとの集約表現と比較すると,入力領域の品質の変化に対して,我々のアプローチはより堅牢である。
論文 参考訳(メタデータ) (2022-02-09T18:56:41Z) - A Review of Landcover Classification with Very-High Resolution Remotely
Sensed Optical Images-Analysis Unit,Model Scalability and Transferability [4.704131850850489]
ランドカバー分類は、超高解像度(VHR)画像解析において最も難しい課題の1つである。
ディープラーニング(DL)に基づく土地被覆手法とトレーニング戦略の急速な増加が最先端であると主張されているため、既に断片化された土地被覆マッピング手法の技術的景観はさらに複雑である。
論文 参考訳(メタデータ) (2022-02-07T16:38:40Z) - Interpretable Semantic Photo Geolocalization [4.286838964398275]
ジオローカリゼーションモデルの解釈性を改善するために,2つのコントリビューションを提案する。
本稿では,予測の理解を直感的に向上させる新しいセマンティックパーティショニング手法を提案する。
また,ある予測のための意味的視覚概念の重要性を評価するための新しい指標も導入する。
論文 参考訳(メタデータ) (2021-04-30T13:28:18Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
本稿では,潜在特徴空間における局所的一貫性を学習するPGL(PresideedGuided Local)自己教師モデルを提案する。
我々のPGLモデルは、局所領域の特異な表現を学習し、したがって構造情報を保持できる。
論文 参考訳(メタデータ) (2020-11-25T11:03:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。