論文の概要: Simplex-to-Euclidean Bijections for Categorical Flow Matching
- arxiv url: http://arxiv.org/abs/2510.27480v1
- Date: Fri, 31 Oct 2025 14:00:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 17:52:16.118404
- Title: Simplex-to-Euclidean Bijections for Categorical Flow Matching
- Title(参考訳): カテゴリー型フローマッチングのための単純-ユークリッド的ビジェクション
- Authors: Bernardo Williams, Victor M. Yeom-Song, Marcelo Hartmann, Arto Klami,
- Abstract要約: そこで本研究では, 単純度に支えられた確率分布から学習し, サンプリングする手法を提案する。
弊社のアプローチでは、開単純空間を滑らかな表現によってユークリッド空間に写像し、アッチソン幾何学を利用して写像を定義する。
- 参考スコア(独自算出の注目度): 7.729713754661847
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for learning and sampling from probability distributions supported on the simplex. Our approach maps the open simplex to Euclidean space via smooth bijections, leveraging the Aitchison geometry to define the mappings, and supports modeling categorical data by a Dirichlet interpolation that dequantizes discrete observations into continuous ones. This enables density modeling in Euclidean space through the bijection while still allowing exact recovery of the original discrete distribution. Compared to previous methods that operate on the simplex using Riemannian geometry or custom noise processes, our approach works in Euclidean space while respecting the Aitchison geometry, and achieves competitive performance on both synthetic and real-world data sets.
- Abstract(参考訳): そこで本研究では, 単純度に支えられた確率分布から学習し, サンプリングする手法を提案する。
我々のアプローチは、滑らかな単射を通してオープンな単純空間をユークリッド空間に写像し、アッチソン幾何を利用して写像を定義し、ディリクレ補間による分類データのモデリングをサポートし、離散的な観察を連続的なものへと等化する。
これにより、ユークリッド空間における双射を通して密度のモデリングが可能となり、元の離散分布の正確な回復が可能である。
リーマン幾何学やカスタムノイズプロセスを用いた従来の単純な手法と比較して、我々の手法はユークリッド空間においてアッチソン幾何学を尊重しながら機能し、合成および実世界のデータセット上での競合性能を達成する。
関連論文リスト
- Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation [79.27003481818413]
離散的様相変分オートエンコーダの潜在多様体をユークリッド幾何学へ正規化する訓練フレームワークであるFlatVIを紹介する。
遅延空間の直線を復号化された単セル多様体上の測地線に近似させることで、FlatVIは下流アプローチとの整合性を高める。
論文 参考訳(メタデータ) (2025-07-15T23:08:14Z) - What's Inside Your Diffusion Model? A Score-Based Riemannian Metric to Explore the Data Manifold [0.053713376045563095]
スコアに基づくリーマン計量を導入し、データ多様体の内在幾何学を特徴づける。
我々のアプローチは、測地学が自然に多様体の輪郭に従う幾何学を生成する。
我々のスコアに基づく測地学は、基礎となるデータ分布を尊重する有意義な垂直変換を捉えていることを示す。
論文 参考訳(メタデータ) (2025-05-16T11:19:57Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
本研究では、円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
後部推論のために,高速ギブズサンプリングに寄与するストラトノビッチ様拡張法を導入する。
本研究では,このモデルを用いて風向予測と走行歩行周期のパーセンテージを関節角度の関数として適用する実験を行った。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Neural Latent Geometry Search: Product Manifold Inference via
Gromov-Hausdorff-Informed Bayesian Optimization [21.97865037637575]
我々は、この新しい定式化を数学的に定義し、ニューラル潜在幾何探索(NLGS)として作成する。
計量幾何学からのグロモフ・ハウスドルフ距離に基づいて、候補潜在測地間の距離の新たな概念を提案する。
次に、潜在測地間の滑らかさの概念に基づいてグラフ探索空間を設計し、その計算を帰納バイアスとして利用する。
論文 参考訳(メタデータ) (2023-09-09T14:29:22Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
メッシュ変形は、動的シミュレーション、レンダリング、再構成を含む多くの3次元視覚タスクにおいて重要な役割を果たす。
現在のディープラーニングにおける一般的なアプローチは、2つのメッシュからランダムにサンプリングされた2つの点雲とシャンファーの擬似距離を比較することで、2つの面間の差を測定するセットベースアプローチである。
本稿では,メッシュのスライスされたワッサーシュタイン距離を,セットベースアプローチを一般化する確率測度として表現したメッシュ変形の学習指標を提案する。
論文 参考訳(メタデータ) (2023-05-27T19:10:19Z) - Temporally-Consistent Surface Reconstruction using Metrically-Consistent
Atlases [131.50372468579067]
そこで本稿では,時間変化点雲列から時間一貫性のある面列を復元する手法を提案する。
我々は、再構成された表面をニューラルネットワークによって計算されたアトラスとして表現し、フレーム間の対応性を確立することができる。
当社のアプローチは、いくつかの挑戦的なデータセットにおいて、最先端のものよりも優れています。
論文 参考訳(メタデータ) (2021-11-12T17:48:25Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。