論文の概要: Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction
- arxiv url: http://arxiv.org/abs/2305.17555v3
- Date: Mon, 18 Mar 2024 04:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 04:32:24.778258
- Title: Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction
- Title(参考訳): 皮質表面再構成のための効率的な最適輸送による異方性メッシュ変形
- Authors: Tung Le, Khai Nguyen, Shanlin Sun, Kun Han, Nhat Ho, Xiaohui Xie,
- Abstract要約: メッシュ変形は、動的シミュレーション、レンダリング、再構成を含む多くの3次元視覚タスクにおいて重要な役割を果たす。
現在のディープラーニングにおける一般的なアプローチは、2つのメッシュからランダムにサンプリングされた2つの点雲とシャンファーの擬似距離を比較することで、2つの面間の差を測定するセットベースアプローチである。
本稿では,メッシュのスライスされたワッサーシュタイン距離を,セットベースアプローチを一般化する確率測度として表現したメッシュ変形の学習指標を提案する。
- 参考スコア(独自算出の注目度): 40.73187749820041
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction. However, defining an efficient discrepancy between predicted and target meshes remains an open problem. A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance. Nevertheless, the set-based approach still has limitations such as lacking a theoretical guarantee for choosing the number of points in sampled point-clouds, and the pseudo-metricity and the quadratic complexity of the Chamfer divergence. To address these issues, we propose a novel metric for learning mesh deformation. The metric is defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach. By leveraging probability measure space, we gain flexibility in encoding meshes using diverse forms of probability measures, such as continuous, empirical, and discrete measures via varifold representation. After having encoded probability measures, we can compare meshes by using the sliced Wasserstein distance which is an effective optimal transport distance with linear computational complexity and can provide a fast statistical rate for approximating the surface of meshes. To the end, we employ a neural ordinary differential equation (ODE) to deform the input surface into the target shape by modeling the trajectories of the points on the surface. Our experiments on cortical surface reconstruction demonstrate that our approach surpasses other competing methods in multiple datasets and metrics.
- Abstract(参考訳): メッシュ変形は、動的シミュレーション、レンダリング、再構成を含む多くの3次元視覚タスクにおいて重要な役割を果たす。
しかしながら、予測されたメッシュとターゲットメッシュの効率的な相違を定義することは、未解決の問題である。
現在のディープラーニングにおける一般的なアプローチは、2つのメッシュからランダムにサンプリングされた2つの点雲とシャンファーの擬似距離を比較することで、2つの面間の差を測定するセットベースアプローチである。
それでも、セットベースのアプローチには、サンプリングされた点雲の点数を選択する理論的保証が欠如していることや、シャンファー発散の擬測度と二次複雑性など、制限がある。
これらの問題に対処するために,メッシュ変形を学習するための新しい指標を提案する。
この計量は、セットベースのアプローチを一般化する確率測度として表されるメッシュ上のワッサーシュタイン距離をスライスして定義される。
確率測度空間を利用することで、連続的、経験的、離散的な測度などの様々な種類の確率測度を用いてメッシュを符号化する際の柔軟性を得る。
確率測度を符号化した後、線形計算複雑性と効果的な最適輸送距離であるスライスされたワッサーシュタイン距離を用いてメッシュを比較することができ、メッシュの表面を近似するための高速な統計速度を提供することができる。
最後に, 入力面を対象形状に変形させるために, 平面上の点の軌跡をモデル化したニューラル常微分方程式(ODE)を用いる。
大脳皮質表面の再構成実験は、複数のデータセットやメトリクスにおいて、我々のアプローチが他の競合する手法を上回ることを示した。
関連論文リスト
- Sample-Efficient Geometry Reconstruction from Euclidean Distances using Non-Convex Optimization [7.114174944371803]
ユークリッド距離情報点対を埋め込む適切な点を見つける問題は、コアタスクとサブマシン学習の問題の両方として生じる。
本稿では,最小限のサンプル数を考えると,この問題を解決することを目的とする。
論文 参考訳(メタデータ) (2024-10-22T13:02:12Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Point Cloud Classification via Deep Set Linearized Optimal Transport [51.99765487172328]
我々は,点雲をL2-$spaceに効率的に同時埋め込むアルゴリズムであるDeep Set Linearized Optimal Transportを紹介した。
この埋め込みはワッサーシュタイン空間内の特定の低次元構造を保持し、点雲の様々なクラスを区別する分類器を構成する。
我々は,有限個のラベル付き点雲を持つフローデータセットの実験を通じて,標準的な深層集合アプローチに対するアルゴリズムの利点を実証する。
論文 参考訳(メタデータ) (2024-01-02T23:26:33Z) - Elastic shape analysis of surfaces with second-order Sobolev metrics: a
comprehensive numerical framework [11.523323270411959]
本稿では3次元表面形状解析のための数値的手法を提案する。
本研究では、3次元メッシュとして表されるパラメータ化面と非パラメータ化面の間の測地線と測地線距離の計算に対処する。
論文 参考訳(メタデータ) (2022-04-08T18:19:05Z) - Semi-Discrete Normalizing Flows through Differentiable Tessellation [31.474420819149724]
本稿では,連続空間上の量子化境界を正確に評価し,テッセルレーションに基づく手法を提案する。
これは、微分可能なボロノイ・テッセルレーションによってパラメータ化された凸多面体上の正規化フローを構築することによって行われる。
我々は,データモダリティの多様さにまたがる既存手法の改善を示すとともに,Voronoi混合をベースラインモデルに組み込むことで,大きな利益を得ることができることを見出した。
論文 参考訳(メタデータ) (2022-03-14T03:06:31Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - MongeNet: Efficient Sampler for Geometric Deep Learning [17.369783838267942]
MongeNetは高速かつ最適なトランスポートベースのサンプリングツールで、より優れた近似特性を備えたメッシュの正確な識別を可能にする。
本手法をユビキタスなランダムな一様サンプリングと比較し,近似誤差がほぼ半分であり,計算オーバーヘッドが非常に小さいことを示す。
論文 参考訳(メタデータ) (2021-04-29T17:59:01Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
スパースサンプリングされた場所のみの機能を計算することを提案する。
次に、効率的な手順で特徴写像を密に再構築する。
提案したネットワークは、様々なコンピュータビジョンタスクの精度を維持しながら、かなりの計算を省くために実験的に示されている。
論文 参考訳(メタデータ) (2020-03-19T15:36:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。