論文の概要: No-rank Tensor Decomposition Using Metric Learning
- arxiv url: http://arxiv.org/abs/2511.01816v1
- Date: Mon, 03 Nov 2025 18:21:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 16:37:27.366939
- Title: No-rank Tensor Decomposition Using Metric Learning
- Title(参考訳): メトリック学習を用いた非ランクテンソル分解
- Authors: Maryam Bagherian,
- Abstract要約: 本稿では,計量学習に基づく非ランクテンソル分解フレームワークを提案する。
フレームワークの収束に関する理論的保証を提供し、その計量特性の有界性を確立する。
提案手法は, トランスフォーマーに基づく手法と比較して, より少ないトレーニングデータセットで優れた性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor decomposition faces fundamental challenges in analyzing high-dimensional data, where traditional methods based on reconstruction and fixed-rank constraints often fail to capture semantically meaningful structures. This paper introduces a no-rank tensor decomposition framework grounded in metric learning, which replaces reconstruction objectives with a discriminative, similarity-based optimization. The proposed approach learns data-driven embeddings by optimizing a triplet loss with diversity and uniformity regularization, creating a feature space where distance directly reflects semantic similarity. We provide theoretical guarantees for the framework's convergence and establish bounds on its metric properties. Evaluations across diverse domains -- including face recognition (LFW, Olivetti), brain connectivity analysis (ABIDE), and simulated data (galaxy morphology, crystal structures) -- demonstrate that our method outperforms baseline techniques, including PCA, t-SNE, UMAP, and tensor decomposition baselines (CP and Tucker). Results show substantial improvements in clustering metrics (Silhouette Score, Davies-Bouldin Index, Calinski-Harabasz Index, Separation Ratio, Adjusted Rand Index, Normalized Mutual Information) and reveal a fundamental trade-off: while metric learning optimizes global class separation, it deliberately transforms local geometry to align with semantic relationships. Crucially, our approach achieves superior performance with smaller training datasets compared to transformer-based methods, offering an efficient alternative for domains with limited labeled data. This work establishes metric learning as a paradigm for tensor-based analysis, prioritizing semantic relevance over pixel-level fidelity while providing computational advantages in data-scarce scenarios.
- Abstract(参考訳): テンソル分解は高次元データの解析において基本的な課題に直面する。
本稿では,再現目的を識別的類似性に基づく最適化に置き換える,メートル法学習に基づく非ランクテンソル分解フレームワークを提案する。
提案手法は,多様性と一様正則化で三重項損失を最適化することにより,データ駆動型埋め込みを学習し,距離が意味的類似性を直接反映する特徴空間を生成する。
フレームワークの収束に関する理論的保証を提供し、その計量特性の有界性を確立する。
顔認識 (LFW, Olivetti), 脳接続解析 (ABIDE), シミュレーションデータ (ギャラクシー形態, 結晶構造) など多種多様な領域で評価した結果, PCA, t-SNE, UMAP, テンソル分解ベースライン (CP, Tucker) などのベースライン技術より優れていることが示された。
その結果,クラスタリング指標(Silhouette Score, Davies-Bouldin Index, Calinski-Harabasz Index, separation Ratio, Adjusted Rand Index, Normalized Mutual Information)が大幅に改善され,基本的なトレードオフが明らかになった。
重要な点として,本手法はトランスフォーマーベースの手法に比べて少ないトレーニングデータセットで優れた性能を達成し,ラベル付きデータに制限のあるドメインに対して効率的な代替手段を提供する。
この研究は、テンソルに基づく分析のパラダイムとしてメートル法学習を確立し、画素レベルの忠実さよりも意味論的妥当性を優先し、データスカースシナリオにおける計算上の優位性を提供する。
関連論文リスト
- NDCG-Consistent Softmax Approximation with Accelerated Convergence [67.10365329542365]
本稿では,ランキングの指標と直接一致した新たな損失定式化を提案する。
提案したRG損失を高効率な Alternating Least Squares (ALS) 最適化手法と統合する。
実世界のデータセットに対する実証的な評価は、我々のアプローチが同等または上位のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2025-06-11T06:59:17Z) - GeloVec: Higher Dimensional Geometric Smoothing for Coherent Visual Feature Extraction in Image Segmentation [0.0]
GeloVecはセマンティックセグメンテーションのための新しいCNNベースの注意スムーシングフレームワークである。
視覚的コヒーレント領域間の頑健な多様体関係を確立するために、高次元幾何学的滑らか化法を実装している。
本フレームワークは,変換時の情報損失が欠如しているため,学習分野にまたがる強力な一般化能力を示す。
論文 参考訳(メタデータ) (2025-05-02T07:07:00Z) - Outlier-aware Tensor Robust Principal Component Analysis with Self-guided Data Augmentation [21.981038455329013]
適応重み付けを用いた自己誘導型データ拡張手法を提案する。
本研究では,最先端手法と比較して精度と計算効率の両面での改善を示す。
論文 参考訳(メタデータ) (2025-04-25T13:03:35Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - A Coupled CP Decomposition for Principal Components Analysis of
Symmetric Networks [11.988825533369686]
シーケンスネットワークデータのための主成分分析(PCA)フレームワークを提案する。
提案した「結合CP」分解の効率的な計算アルゴリズムを導出する。
本稿は、シミュレーションデータと、政治科学・金融経済学の事例における提案の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-09T20:52:19Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
ユニタリネットワーク(POU-Nets)の分割は、回帰とPDEの解に対する代数収束率を実現することができる。
ガウス雑音モデルを用いてPOU-Netを拡張し、最大可算損失の勾配に基づく一般化を導出できる確率的一般化を得る。
本研究では,高次元・低次元での性能を定量化するためのベンチマークを行い,高次元空間内のデータの潜在次元にのみ依存することを示す。
論文 参考訳(メタデータ) (2021-07-07T08:02:00Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
深層ネットワークに基づく弱い教師付きセマンティックマッチングに対処する。
本研究では,背景乱れの影響を抑えるために,前景領域を明示的に推定する。
複数の画像にまたがって予測変換を強制し、幾何的に可視かつ一貫したサイクル一貫性の損失を発生させる。
論文 参考訳(メタデータ) (2020-03-31T22:38:09Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z) - Learning Flat Latent Manifolds with VAEs [16.725880610265378]
本稿では、ユークリッド計量がデータポイント間の類似性のプロキシとなる変分自動エンコーダのフレームワークの拡張を提案する。
我々は、変分オートエンコーダで一般的に使用されるコンパクトな以前のものを、最近発表されたより表現力のある階層型に置き換える。
提案手法は,ビデオ追跡ベンチマークを含む,さまざまなデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-12T09:54:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。