論文の概要: Assessing win strength in MLB win prediction models
- arxiv url: http://arxiv.org/abs/2511.02815v1
- Date: Tue, 04 Nov 2025 18:40:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-05 18:47:06.150722
- Title: Assessing win strength in MLB win prediction models
- Title(参考訳): MLB勝利予測モデルにおける勝利強度の評価
- Authors: Morgan Allen, Paul Savala,
- Abstract要約: 共通のデータセットを使用して、包括的な機械学習モデルをトレーニングする。
我々は,これらのモデルが生み出す勝利確率を,スコア差によって測定された勝利の強さに関連付ける。
ランラインベッティングにおける意思決定メカニズムとして,予測勝利確率を用いた結果の分析を行った。
- 参考スコア(独自算出の注目度): 0.34376560669160394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Major League Baseball, strategy and planning are major factors in determining the outcome of a game. Previous studies have aided this by building machine learning models for predicting the winning team of any given game. We extend this work by training a comprehensive set of machine learning models using a common dataset. In addition, we relate the win probabilities produced by these models to win strength as measured by score differential. In doing so we show that the most common machine learning models do indeed demonstrate a relationship between predicted win probability and the strength of the win. Finally, we analyze the results of using predicted win probabilities as a decision making mechanism on run-line betting. We demonstrate positive returns when utilizing appropriate betting strategies, and show that naive use of machine learning models for betting lead to significant loses.
- Abstract(参考訳): メジャーリーグ野球では、試合の結果を決定する主要な要因は戦略と計画である。
これまでの研究は、任意のゲームの勝利チームを予測するための機械学習モデルを構築することで、これを支援してきた。
私たちは、共通のデータセットを使用して、包括的な機械学習モデルのセットをトレーニングすることで、この作業を拡張します。
さらに,これらのモデルが生み出す勝利確率を,スコア差によって測定された勝利強度に関連付ける。
このようにして、最も一般的な機械学習モデルが、予測された勝利確率と勝利の強さの関係を実際に示していることを示す。
最後に, ランラインベッティングにおける決定機構として, 予測勝利確率を用いた結果を分析する。
適切なベッティング戦略を利用する場合の肯定的なリターンを示し、ベッティングに機械学習モデルを用いることで大きな損失をもたらすことを示す。
関連論文リスト
- Predictive Churn with the Set of Good Models [61.00058053669447]
本稿では,予測的不整合という2つの無関係な概念の関連性について考察する。
予測多重性(英: predictive multiplicity)は、個々のサンプルに対して矛盾する予測を生成するモデルである。
2つ目の概念である予測チャーン(英: predictive churn)は、モデル更新前後の個々の予測の違いを調べるものである。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - ShuttleSHAP: A Turn-Based Feature Attribution Approach for Analyzing
Forecasting Models in Badminton [52.21869064818728]
バドミントンにおけるプレイヤー戦術予測のための深層学習アプローチは、部分的にはラリープレイヤの相互作用に関する効果的な推論に起因する有望なパフォーマンスを示している。
本稿では,Shapley値の変量に基づいてバドミントンにおける予測モデルを解析するためのターンベース特徴属性手法であるShuttleSHAPを提案する。
論文 参考訳(メタデータ) (2023-12-18T05:37:51Z) - Prediction of Handball Matches with Statistically Enhanced Learning via
Estimated Team Strengths [0.0]
ハンドボールゲームを予測するため,統計的に強化された学習モデル(別名SEL)を提案する。
SELで強化された機械学習モデルは、80%以上の精度で最先端のモデルより優れています。
論文 参考訳(メタデータ) (2023-07-20T00:50:26Z) - Supervised Learning for Table Tennis Match Prediction [2.7835697868135902]
本稿では,テーブルテニスシングルマッチの結果を予測するために機械学習を用いることを提案する。
我々は,プレイヤーとマッチング統計を特徴として用いて,その相対的重要性をアブレーション研究で評価する。
結果は将来の卓球予測モデルのベースラインとして機能し、同様の球技の予測研究にフィードバックすることができる。
論文 参考訳(メタデータ) (2023-03-28T17:42:13Z) - Betting the system: Using lineups to predict football scores [0.0]
本稿では,決勝点におけるラインアップの役割を分析し,サッカーにおけるランダム性を低減することを目的とする。
サッカークラブはラインナップに数百万ドルを投資し、個々の統計がより良い結果にどのように変換するかを知ることで投資を最適化することができる。
スポーツの賭けは指数関数的に増加しており、将来を予測することは利益があり、望ましい。
論文 参考訳(メタデータ) (2022-10-12T15:47:42Z) - On the Robustness of Random Forest Against Untargeted Data Poisoning: An
Ensemble-Based Approach [42.81632484264218]
機械学習モデルでは、トレーニングセット(中毒)の分画の摂動が、モデルの精度を著しく損なう可能性がある。
本研究の目的は、ランダムな森林を標的のない無作為な毒殺攻撃から保護する、新しいハッシュベースのアンサンブルアプローチを実現することである。
論文 参考訳(メタデータ) (2022-09-28T11:41:38Z) - GCN-WP -- Semi-Supervised Graph Convolutional Networks for Win
Prediction in Esports [84.55775845090542]
本稿では,グラフ畳み込みネットワークに基づくエスポートに対する半教師付き勝利予測モデルを提案する。
GCN-WPはマッチとプレーヤに関する30以上の機能を統合し、近隣のゲームを分類するためにグラフ畳み込みを使用している。
本モデルは,LLの機械学習やスキル評価モデルと比較して,最先端の予測精度を実現する。
論文 参考訳(メタデータ) (2022-07-26T21:38:07Z) - Machine Learning in Sports: A Case Study on Using Explainable Models for
Predicting Outcomes of Volleyball Matches [0.0]
本稿では,ブラジルバレーボールリーグ(SuperLiga)における試合結果を予測するための2相説明可能な人工知能(XAI)アプローチについて検討する。
第1フェーズでは、解釈可能なルールベースのMLモデルを直接使用し、モデルの振る舞いをグローバルに理解する。
第2フェーズでは,SVM(Support Vector Machine)やDNN(Deep Neural Network)といった非線形モデルを構築し,バレーボールの試合結果の予測性能を得る。
論文 参考訳(メタデータ) (2022-06-18T18:09:15Z) - Markov Cricket: Using Forward and Inverse Reinforcement Learning to
Model, Predict And Optimize Batting Performance in One-Day International
Cricket [0.8122270502556374]
我々は1日の国際クリケットゲームをマルコフプロセスとしてモデル化し、前向きおよび逆強化学習(RL)を適用してゲームのための3つの新しいツールを開発する。
本手法は,残余スコアリング資源のプロキシとして使用する場合,最先端のDuckworth-Lewis-Stern法を3倍から10倍に向上させることを示す。
予測とシミュレーションのテクニックは中断されたゲームの最終スコアを推定するためのより公平な代替手段となり得るが、推定された報酬モデルはプロのゲームがプレイ戦略を最適化するための有用な洞察を提供するかもしれない。
論文 参考訳(メタデータ) (2021-03-07T13:11:16Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Interpretable Real-Time Win Prediction for Honor of Kings, a Popular
Mobile MOBA Esport [51.20042288437171]
本研究では,2段階空間時間ネットワーク(TSSTN)を提案する。
実世界のライブストリーミングシナリオにおける実験結果と応用により,提案したTSSTNモデルは予測精度と解釈可能性の両方において有効であることが示された。
論文 参考訳(メタデータ) (2020-08-14T12:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。