論文の概要: Sketch-Augmented Features Improve Learning Long-Range Dependencies in Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2511.03824v1
- Date: Wed, 05 Nov 2025 19:41:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-07 20:17:53.199162
- Title: Sketch-Augmented Features Improve Learning Long-Range Dependencies in Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークにおけるロングランジ依存性の学習を改善するSketch-augmented機能
- Authors: Ryien Hosseini, Filippo Simini, Venkatram Vishwanath, Rebecca Willett, Henry Hoffmann,
- Abstract要約: グラフニューラルネットワークは、局所的な情報を反復的に集約することで、グラフ構造化データから学習する。
この作業では、ノード機能のランダムなグローバルな埋め込みを標準のGNNに注入し、長距離依存関係を効率的にキャプチャする。
実世界のグラフ学習における実験結果から,この手法がベースラインGNNよりも一貫して性能を向上させることが確認された。
- 参考スコア(独自算出の注目度): 16.5175121704107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks learn on graph-structured data by iteratively aggregating local neighborhood information. While this local message passing paradigm imparts a powerful inductive bias and exploits graph sparsity, it also yields three key challenges: (i) oversquashing of long-range information, (ii) oversmoothing of node representations, and (iii) limited expressive power. In this work we inject randomized global embeddings of node features, which we term \textit{Sketched Random Features}, into standard GNNs, enabling them to efficiently capture long-range dependencies. The embeddings are unique, distance-sensitive, and topology-agnostic -- properties which we analytically and empirically show alleviate the aforementioned limitations when injected into GNNs. Experimental results on real-world graph learning tasks confirm that this strategy consistently improves performance over baseline GNNs, offering both a standalone solution and a complementary enhancement to existing techniques such as graph positional encodings. Our source code is available at \href{https://github.com/ryienh/sketched-random-features}{https://github.com/ryienh/sketched-random-features}.
- Abstract(参考訳): グラフニューラルネットワークは、局所的な情報を反復的に集約することで、グラフ構造化データから学習する。
このローカルメッセージパッシングパラダイムは、強力な帰納バイアスを与え、グラフの空間性を悪用しますが、同時に3つの重要な課題も生み出します。
一 長距離情報の過度な監視
(ii)ノード表現の過度な平滑化、及び
(三)限定表現力。
本研究では,ノード特徴のランダムなグローバルな埋め込みを標準GNNに注入し,長距離依存関係を効率的にキャプチャする。
埋め込みはユニークで、距離に敏感で、トポロジーに依存しない -- 前述の制限をGNNに注入した場合、分析的かつ経験的に緩和する特性です。
実世界のグラフ学習タスクの実験結果から、この戦略はベースラインのGNNよりも一貫して性能を向上し、グラフ位置符号化のような既存の技術に補完的なソリューションと相補的な拡張を提供することを確認した。
ソースコードは \href{https://github.com/ryienh/sketched-random-features}{https://github.com/ryienh/sketched-random-features} で公開されている。
関連論文リスト
- Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) はノード分類タスク用に設計された非神経モデルである。
GNNにアクセスできる情報のごく一部しか使わない従来のグラフアルゴリズムとは異なり、提案モデルではノードの特徴とエンティティ間の関係を同時に活用する。
論文 参考訳(メタデータ) (2024-11-19T08:32:14Z) - Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
グラフニューラルネットワーク(GNN)は,グラフベースのデータから学ぶ上で大きな成功を収めている。
現在のGNNのキーとなるメカニズムはメッセージパッシングであり、ノードの機能は、その近隣から渡される情報に基づいて更新される。
本研究では,局所的特徴符号化(CLFE)を提案する。
論文 参考訳(メタデータ) (2024-05-08T01:51:19Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRAREはノード相対エントロピーと深層強化学習に基づいて構築されたフレームワークである。
革新的なノード相対エントロピーは、ノードペア間の相互情報を測定するために使用される。
グラフトポロジを最適化するために,深層強化学習に基づくアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-15T11:30:18Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
本稿では,動的グラフの異常エッジを検出するために,エンドツーエンドの時間構造グラフニューラルネットワークモデルを提案する。
特に,まずターゲットエッジを中心にした$h$ホップ囲むサブグラフを抽出し,各ノードの役割を識別するノードラベル機能を提案する。
抽出した特徴に基づき,GRU(Gated Recurrent Unit)を用いて,異常検出のための時間的情報を取得する。
論文 参考訳(メタデータ) (2020-05-15T09:17:08Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
我々はグラフ信号処理を活用してグラフニューラルネットワーク(GNN)の表現空間を特徴付ける。
GNNにおけるグラフ畳み込みフィルタの役割について議論し、そのようなフィルタで構築されたアーキテクチャは、置換同値の基本的な性質と位相変化に対する安定性を持つことを示す。
また,ロボット群に対するリコメンデータシステムや分散型コントローラの学習におけるGNNの利用について検討した。
論文 参考訳(メタデータ) (2020-03-08T13:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。