論文の概要: Sparse Linear Regression is Easy on Random Supports
- arxiv url: http://arxiv.org/abs/2511.06211v1
- Date: Sun, 09 Nov 2025 03:48:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.811472
- Title: Sparse Linear Regression is Easy on Random Supports
- Title(参考訳): Sparse Linear Regressionはランダムサポートを簡単にする
- Authors: Gautam Chandrasekaran, Raghu Meka, Konstantinos Stavropoulos,
- Abstract要約: 我々は mathbbRN times d$ で設計行列 $X を入力し、 mathbbRN times d$ で測定やラベル $y を入力します。
w*$がランダムに選択されると、およそ$N = O(klog d/epsilon)$サンプルで予測エラー$epsilon$が得られる。
- 参考スコア(独自算出の注目度): 20.128442161507582
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse linear regression is one of the most basic questions in machine learning and statistics. Here, we are given as input a design matrix $X \in \mathbb{R}^{N \times d}$ and measurements or labels ${y} \in \mathbb{R}^N$ where ${y} = {X} {w}^* + {\xi}$, and ${\xi}$ is the noise in the measurements. Importantly, we have the additional constraint that the unknown signal vector ${w}^*$ is sparse: it has $k$ non-zero entries where $k$ is much smaller than the ambient dimension. Our goal is to output a prediction vector $\widehat{{w}}$ that has small prediction error: $\frac{1}{N}\cdot \|{X} {w}^* - {X} \widehat{{w}}\|^2_2$. Information-theoretically, we know what is best possible in terms of measurements: under most natural noise distributions, we can get prediction error at most $\epsilon$ with roughly $N = O(k \log d/\epsilon)$ samples. Computationally, this currently needs $d^{\Omega(k)}$ run-time. Alternately, with $N = O(d)$, we can get polynomial-time. Thus, there is an exponential gap (in the dependence on $d$) between the two and we do not know if it is possible to get $d^{o(k)}$ run-time and $o(d)$ samples. We give the first generic positive result for worst-case design matrices ${X}$: For any ${X}$, we show that if the support of ${w}^*$ is chosen at random, we can get prediction error $\epsilon$ with $N = \text{poly}(k, \log d, 1/\epsilon)$ samples and run-time $\text{poly}(d,N)$. This run-time holds for any design matrix ${X}$ with condition number up to $2^{\text{poly}(d)}$. Previously, such results were known for worst-case ${w}^*$, but only for random design matrices from well-behaved families, matrices that have a very low condition number ($\text{poly}(\log d)$; e.g., as studied in compressed sensing), or those with special structural properties.
- Abstract(参考訳): 疎線形回帰は、機械学習と統計学において最も基本的な問題の一つである。
ここで、設計行列 $X \in \mathbb{R}^{N \times d}$ とラベル ${y} \in \mathbb{R}^N$ ここで ${y} = {X} {w}^* + {\xi}$, ${\xi}$ は測定のノイズである。
重要なことに、未知の信号ベクトル ${w}^*$ がスパースであることのさらなる制約がある。
我々のゴールは、小さな予測誤差を持つ予測ベクトル $\widehat{w}}$ を出力することである。
ほとんどの自然雑音分布では、およそ$N = O(k \log d/\epsilon)$サンプルで予測誤差を最大$\epsilon$で得ることができる。
計算上、これは現在$d^{\Omega(k)}$ run-timeを必要としている。
代わりに$N = O(d)$ で多項式時間が得られる。
したがって、この二つの間に指数的なギャップ($d$への依存)があり、$d^{o(k)}$ run-timeと$o(d)$サンプルを得ることができるかどうかわからない。
最悪の設計行列に対して、最初の一般的な正の値が${X}$: 任意の${X}$に対して、${w}^*$がランダムに選択されると、予測エラー$\epsilon$ with $N = \text{poly}(k, \log d, 1/\epsilon)$サンプルと実行時の$\text{poly}(d,N)$が得られることを示す。
この実行時間は、条件番号が$2^{\text{poly}(d)}$までの任意の設計行列${X}$に対して保持される。
以前は、そのような結果は最悪の場合${w}^*$で知られていたが、それは、よく研究されたファミリーのランダムな設計行列、非常に低い条件数を持つ行列 (\text{poly}(\log d)$; e g) 、あるいは特別な構造特性を持つ行列に限られていた。
関連論文リスト
- Information-Computation Tradeoffs for Noiseless Linear Regression with Oblivious Contamination [65.37519531362157]
このタスクに対する効率的な統計的クエリアルゴリズムは、VSTATの複雑さを少なくとも$tildeOmega(d1/2/alpha2)$で要求する。
論文 参考訳(メタデータ) (2025-10-12T15:42:44Z) - The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
未知のインデックス設定における自己選択バイアスを伴う線形回帰の問題を考察する。
我々は,$mathbfw_1,ldots,mathbfw_kinを復元する,新しい,ほぼ最適なサンプル効率($k$)アルゴリズムを提案する。
このアルゴリズムは雑音の仮定をかなり緩めることに成功し、従って関連する最大線形回帰の設定にも成功している。
論文 参考訳(メタデータ) (2024-02-22T02:20:24Z) - A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee [16.409210914237086]
行列 $Ain mathbbRntimes d$ とテンソル $bin mathbbRn$ が与えられたとき、 $ell_infty$ の回帰問題を考える。
このような$ell_infty$レグレッションの保証を得るためには、濃密なスケッチ行列を使わなければならない。
我々はまた、OCE(Oblivious Coordinate-wise Embedding)特性を利用した $ell_infty$ guarantee regression のための新しい分析フレームワークを開発した。
論文 参考訳(メタデータ) (2023-02-01T05:22:40Z) - A spectral least-squares-type method for heavy-tailed corrupted
regression with unknown covariance \& heterogeneous noise [2.019622939313173]
重み付き最小二乗線形回帰は、少なくとも$epsilon n$ arbitrary outliersの$n$のラベル特徴サンプルを破損させたと仮定して再検討する。
本稿では,$(Sigma,Xi) や $Xi$ の演算ノルムに関する知識を前提に,電力法に基づくほぼ最適に計算可能な推定器を提案する。
論文 参考訳(メタデータ) (2022-09-06T23:37:31Z) - Active Sampling for Linear Regression Beyond the $\ell_2$ Norm [70.49273459706546]
対象ベクトルの少数のエントリのみを問合せすることを目的とした線形回帰のためのアクティブサンプリングアルゴリズムについて検討する。
我々はこの$d$への依存が対数的要因まで最適であることを示す。
また、損失関数に対して最初の全感度上界$O(dmax1,p/2log2 n)$を提供し、最大で$p$成長する。
論文 参考訳(メタデータ) (2021-11-09T00:20:01Z) - Sparse sketches with small inversion bias [79.77110958547695]
逆バイアスは、逆の共分散に依存する量の推定を平均化するときに生じる。
本研究では、確率行列に対する$(epsilon,delta)$-unbiased estimatorという概念に基づいて、逆バイアスを解析するためのフレームワークを開発する。
スケッチ行列 $S$ が密度が高く、すなわちサブガウスのエントリを持つとき、$(epsilon,delta)$-unbiased for $(Atop A)-1$ は $m=O(d+sqrt d/ のスケッチを持つ。
論文 参考訳(メタデータ) (2020-11-21T01:33:15Z) - Efficient Statistics for Sparse Graphical Models from Truncated Samples [19.205541380535397]
i) スパースガウス図形モデルの推論と (ii) スパース線形モデルの回復支援の2つの基本的問題と古典的問題に焦点をあてる。
疎線型回帰については、$(bf x,y)$ が生成されるが、$y = bf xtopOmega* + MathcalN(0,1)$ と $(bf x, y)$ は、truncation set $S subseteq mathbbRd$ に属する場合にのみ見られる。
論文 参考訳(メタデータ) (2020-06-17T09:21:00Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
圧縮センシングにおいて、100万倍のN$センシング行列上の制限等尺性(RIP)はスパースベクトルの効率的な再構成を保証する。
Mtimes N$ matrices with i.d.$mathcalN(0,1/M)$ entry。
論文 参考訳(メタデータ) (2020-05-22T16:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。