論文の概要: Probably Approximately Global Robustness Certification
- arxiv url: http://arxiv.org/abs/2511.06495v1
- Date: Sun, 09 Nov 2025 18:46:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:44.978937
- Title: Probably Approximately Global Robustness Certification
- Title(参考訳): おそらく大域的ロバスト性認定
- Authors: Peter Blohm, Patrick Indri, Thomas Gärtner, Sagar Malhotra,
- Abstract要約: 分類アルゴリズムの逆ロバスト性に対する確率的保証を提案し,検討する。
主要なアイデアは、$epsilon$-netをサンプリングし、サンプルのローカルなロバスト性オラクルを呼び出すことである。
我々のアプローチは、従来の形式的検証の範囲を超えている大規模なニューラルネットワークにも適用できる。
- 参考スコア(独自算出の注目度): 2.957223821964636
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose and investigate probabilistic guarantees for the adversarial robustness of classification algorithms. While traditional formal verification approaches for robustness are intractable and sampling-based approaches do not provide formal guarantees, our approach is able to efficiently certify a probabilistic relaxation of robustness. The key idea is to sample an $\epsilon$-net and invoke a local robustness oracle on the sample. Remarkably, the size of the sample needed to achieve probably approximately global robustness guarantees is independent of the input dimensionality, the number of classes, and the learning algorithm itself. Our approach can, therefore, be applied even to large neural networks that are beyond the scope of traditional formal verification. Experiments empirically confirm that it characterizes robustness better than state-of-the-art sampling-based approaches and scales better than formal methods.
- Abstract(参考訳): 分類アルゴリズムの逆ロバスト性に対する確率的保証を提案し,検討する。
従来のロバスト性に対する形式的検証手法は難解であり,サンプリングに基づく手法では正式な保証は得られないが,本手法はロバスト性の確率的緩和を効果的に証明することができる。
鍵となるアイデアは、$\epsilon$-netをサンプリングし、サンプル上の局所ロバスト性オラクルを呼び出すことである。
注目すべきは、おそらく大まかに大まかなロバスト性を保証するのに必要なサンプルのサイズは、入力次元、クラスの数、学習アルゴリズムそのものとは独立である。
したがって、我々のアプローチは、従来の形式的検証の範囲を超えている大規模なニューラルネットワークにも適用することができる。
実験によって、最先端のサンプリングベースアプローチよりもロバスト性が優れ、形式的な手法よりもスケールが優れていることが実証的に確認された。
関連論文リスト
- Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
モデルシフトに対する反ファクトの堅牢性を計算することはNP完全であることを示す。
本稿では,頑健性の厳密な推定を高い保証で実現する新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T09:13:11Z) - Certifying Global Robustness for Deep Neural Networks [3.8556106468003613]
グローバルなディープニューラルネットワークは、すべての意味のある入力に対する摂動に抵抗する。
現在のロバストネス認証手法は、局所ロバストネスを強調し、スケールと一般化に苦慮している。
本稿では,ディープニューラルネットワークのグローバルロバスト性を評価・検証するための体系的かつ効率的な手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T00:46:04Z) - Towards Certified Probabilistic Robustness with High Accuracy [3.957941698534126]
Adrialの例は、ニューラルネットワーク上に構築された多くのクリティカルシステムに対して、セキュリティ上の脅威となる。
確実に堅牢で正確なニューラルネットワークモデルを構築する方法はまだオープンな問題だ。
本稿では,高い精度と高い確率ロバスト性を実現することを目的とした新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-02T09:39:47Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
敵の防御は、ディープニューラルネットワークの堅牢性を大幅に向上させた。
本研究では,ネットワーク予測における導入性に関する一般的な手法を提案する。
また、信頼性の低い予測を拒否する意思決定の円滑化にも活用する。
論文 参考訳(メタデータ) (2023-06-10T15:11:24Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
我々は「ガウス雑音下での精度」を、入力に対する対角的ロバスト性の容易に計算可能なプロキシとして利用する。
実験の結果, 提案手法は, 最先端の訓練手法による信頼性向上を継続的に示すことがわかった。
論文 参考訳(メタデータ) (2022-12-18T03:57:12Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
自己混合によるスムーズな分類器のロバスト性を制御するためのトレーニングスキームSmoothMixを提案する。
提案手法は, 厳密性に制限された原因として, 信頼性の低い, オフクラスに近いサンプルを効果的に同定する。
提案手法はスムーズな分類器の検証値である$ell$-robustnessを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-11-17T18:20:59Z) - Certifying Neural Network Robustness to Random Input Noise from Samples [14.191310794366075]
入力の不確実性の存在下でのニューラルネットワークの堅牢性を証明する方法は、安全クリティカルな設定において不可欠である。
本稿では,入力雑音が任意の確率分布に従う場合に,誤分類の確率を上限とする新しいロバスト性証明法を提案する。
論文 参考訳(メタデータ) (2020-10-15T05:27:21Z) - Data-Driven Assessment of Deep Neural Networks with Random Input
Uncertainty [14.191310794366075]
我々は,ネットワーク出力の安全性を同時に証明し,ローカライズ可能なデータ駆動最適化手法を開発した。
深部ReLUネットワークにおける提案手法の有効性とトラクタビリティを実験的に実証した。
論文 参考訳(メタデータ) (2020-10-02T19:13:35Z) - A general framework for defining and optimizing robustness [74.67016173858497]
分類器の様々な種類の堅牢性を定義するための厳密でフレキシブルなフレームワークを提案する。
我々の概念は、分類器の堅牢性は正確性とは無関係な性質と考えるべきであるという仮定に基づいている。
我々は,任意の分類モデルに適用可能な,非常に一般的なロバスト性フレームワークを開発する。
論文 参考訳(メタデータ) (2020-06-19T13:24:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。