論文の概要: QUARK: Quantization-Enabled Circuit Sharing for Transformer Acceleration by Exploiting Common Patterns in Nonlinear Operations
- arxiv url: http://arxiv.org/abs/2511.06767v1
- Date: Mon, 10 Nov 2025 06:46:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-11 21:18:45.121871
- Title: QUARK: Quantization-Enabled Circuit Sharing for Transformer Acceleration by Exploiting Common Patterns in Nonlinear Operations
- Title(参考訳): QUIRK:非線形動作における共通パターンの爆発による変圧器高速化のための量子化可能回路共有
- Authors: Zhixiong Zhao, Haomin Li, Fangxin Liu, Yuncheng Lu, Zongwu Wang, Tao Yang, Li Jiang, Haibing Guan,
- Abstract要約: QUIRKは量子化可能なFPGAアクセラレーションフレームワークである。
Transformerベースのモデル内のすべての非線形操作をターゲットにしている。
新しい回路共有設計により高性能な近似を実現する。
- 参考スコア(独自算出の注目度): 16.476647190730876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based models have revolutionized computer vision (CV) and natural language processing (NLP) by achieving state-of-the-art performance across a range of benchmarks. However, nonlinear operations in models significantly contribute to inference latency, presenting unique challenges for efficient hardware acceleration. To this end, we propose QUARK, a quantization-enabled FPGA acceleration framework that leverages common patterns in nonlinear operations to enable efficient circuit sharing, thereby reducing hardware resource requirements. QUARK targets all nonlinear operations within Transformer-based models, achieving high-performance approximation through a novel circuit-sharing design tailored to accelerate these operations. Our evaluation demonstrates that QUARK significantly reduces the computational overhead of nonlinear operators in mainstream Transformer architectures, achieving up to a 1.96 times end-to-end speedup over GPU implementations. Moreover, QUARK lowers the hardware overhead of nonlinear modules by more than 50% compared to prior approaches, all while maintaining high model accuracy -- and even substantially boosting accuracy under ultra-low-bit quantization.
- Abstract(参考訳): トランスフォーマーベースのモデルは、様々なベンチマークで最先端のパフォーマンスを達成することによって、コンピュータビジョン(CV)と自然言語処理(NLP)に革命をもたらした。
しかし、モデル内の非線形演算は推論遅延に大きく寄与し、効率的なハードウェアアクセラレーションに固有の課題が提示される。
そこで本研究では,非線形演算における共通パターンを利用した量子化可能なFPGAアクセラレーションフレームワークであるQUIRKを提案する。
QUIRKはトランスフォーマーモデル内の全ての非線形演算をターゲットとし、これらの演算を高速化するために設計された新しい回路共有設計により高性能な近似を実現する。
評価の結果、quarrKはメインストリームのTransformerアーキテクチャにおける非線形演算子の計算オーバーヘッドを大幅に減らし、GPU実装の1.96倍のエンドツーエンド高速化を実現している。
さらに、QUIRKは、従来のアプローチと比較して、非線形モジュールのハードウェアオーバーヘッドを50%以上減らし、高いモデル精度を維持しながら、超低ビット量子化による精度を大幅に向上させる。
関連論文リスト
- Design and Implementation of an FPGA-Based Hardware Accelerator for Transformer [0.0]
トランスフォーマーベースの大規模言語モデルは、注意層とフィードフォワード層のための行列乗法に大きく依存している。
資源制約付き Xilinx KV260 FPGA 上で,高度に最適化されたタイル行列乗算アクセラレータを提案する。
我々の設計では、永続的なオンチップストレージ、最大データ再利用のための堅牢な2レベルタイリング戦略、およびシストリックのような非ローリング計算エンジンを活用している。
論文 参考訳(メタデータ) (2025-03-20T22:15:42Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Dynamic Range Reduction via Branch-and-Bound [1.0141085397402314]
ハードウェアアクセラレーターを強化するための主要な戦略は、算術演算における精度の低下である。
本稿ではQUBO問題における精度向上のための完全原理分岐境界アルゴリズムを提案する。
実験は、実際の量子アニール上でのアルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-17T03:07:56Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
本稿では,フィールドプログラマブルゲートアレイ(FPGA)ベースのアクセラレータを効率よく生成するアルゴリズムとハードウェアの共同設計フレームワークを提案する。
アルゴリズムレベルでは、計算とメモリのオーバーヘッドを低減した、新しいマルチエグジット・ドロップアウトベースのベイズNNを提案する。
ハードウェアレベルでは,提案する効率的なベイズNNのためのFPGAベースのアクセラレータを生成するための変換フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-20T17:08:42Z) - ADC/DAC-Free Analog Acceleration of Deep Neural Networks with Frequency
Transformation [2.7488316163114823]
本稿では,アナログ領域の周波数ベーステンソル変換を用いた周波数領域ニューラルネットワークのエネルギー効率向上手法を提案する。
提案手法は,変換行列のトレーニング可能なパラメータを不要にすることで,よりコンパクトなセルを実現する。
16$times$16のクロスバーで8ビット入力処理を行い,Watt当たりの1602テラ演算のエネルギー効率を実現する。
論文 参考訳(メタデータ) (2023-09-04T19:19:39Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
本研究は,粒子検出器のための低グラフニューラルネットワーク(LL-GNN)設計のための新しい再構成可能なアーキテクチャを提案する。
LL-GNNの設計は、洗練されたアルゴリズムが実験データを効率的に処理できるようにすることで、次世代のトリガーシステムを進化させる。
論文 参考訳(メタデータ) (2022-09-28T12:55:35Z) - GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access [71.58925117604039]
非直交多重アクセス(Noma)は、将来の5Gおよび6Gネットワークに必要な大規模な接続を可能にする興味深い技術である。
線形処理と非線形処理の両方の利点を組み合わせたニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-06-13T09:38:23Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - NN-LUT: Neural Approximation of Non-Linear Operations for Efficient
Transformer Inference [9.329021390526124]
GELU、Layer normalization、Softmaxといった非線形演算は、トランスフォーマーモデルのブロックの構築には不可欠だがコストがかかる。
本稿では,効率的なトランスフォーマー推論のためのハードウェアフレンドリな近似フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-03T23:06:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。