論文の概要: ResearchRubrics: A Benchmark of Prompts and Rubrics For Evaluating Deep Research Agents
- arxiv url: http://arxiv.org/abs/2511.07685v1
- Date: Wed, 12 Nov 2025 01:11:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.42557
- Title: ResearchRubrics: A Benchmark of Prompts and Rubrics For Evaluating Deep Research Agents
- Title(参考訳): ResearchRubrics: ディープリサーチエージェントの評価のためのプロンプトとルーブリックのベンチマーク
- Authors: Manasi Sharma, Chen Bo Calvin Zhang, Chaithanya Bandi, Clinton Wang, Ankit Aich, Huy Nghiem, Tahseen Rabbani, Ye Htet, Brian Jang, Sumana Basu, Aishwarya Balwani, Denis Peskoff, Marcos Ayestaran, Sean M. Hendryx, Brad Kenstler, Bing Liu,
- Abstract要約: Deep Research(DR)は、大規模言語モデルを活用して、オープンなクエリに対処する新興エージェントアプリケーションである。
我々はResearchRubricsを紹介します。これは2,800時間以上の人的労働時間で構築されたDRの標準ベンチマークです。
また,DRタスクを3つの軸(概念的幅,論理的ネスト,探索)に沿って分類する,新たな複雑性フレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.666923792025313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Research (DR) is an emerging agent application that leverages large language models (LLMs) to address open-ended queries. It requires the integration of several capabilities, including multi-step reasoning, cross-document synthesis, and the generation of evidence-backed, long-form answers. Evaluating DR remains challenging because responses are lengthy and diverse, admit many valid solutions, and often depend on dynamic information sources. We introduce ResearchRubrics, a standardized benchmark for DR built with over 2,800+ hours of human labor that pairs realistic, domain-diverse prompts with 2,500+ expert-written, fine-grained rubrics to assess factual grounding, reasoning soundness, and clarity. We also propose a new complexity framework for categorizing DR tasks along three axes: conceptual breadth, logical nesting, and exploration. In addition, we develop human and model-based evaluation protocols that measure rubric adherence for DR agents. We evaluate several state-of-the-art DR systems and find that even leading agents like Gemini's DR and OpenAI's DR achieve under 68% average compliance with our rubrics, primarily due to missed implicit context and inadequate reasoning about retrieved information. Our results highlight the need for robust, scalable assessment of deep research capabilities, to which end we release ResearchRubrics(including all prompts, rubrics, and evaluation code) to facilitate progress toward well-justified research assistants.
- Abstract(参考訳): Deep Research(DR)は、大規模言語モデル(LLM)を活用して、オープンなクエリに対処する新興エージェントアプリケーションである。
マルチステップ推論、クロスドキュメント合成、エビデンスに支えられたロングフォームな回答の生成など、いくつかの機能の統合が必要です。
DRの評価は、応答が長く多様であり、多くの有効な解を認め、しばしば動的情報ソースに依存するため、依然として困難である。
我々はResearchRubricsという,2800時間以上の人的労働時間で構築されたDRの標準ベンチマークを紹介します。
また,DRタスクを3つの軸(概念的幅,論理的ネスト,探索)に沿って分類する,新たな複雑性フレームワークを提案する。
さらに,DRエージェントのルーブリック付着度を計測する人間およびモデルに基づく評価プロトコルを開発した。
我々は、いくつかの最先端のDRシステムを評価し、GeminiのDRやOpenAIのDRのような先導エージェントでさえ、我々のルーリックに対する平均68%のコンプライアンスを達成することを発見した。
本研究の結果は,研究支援者への進展を促進するために,ResearchRubrics(すべてのプロンプト,ルーリック,評価コードを含む)をリリースする,堅牢でスケーラブルな研究能力の評価の必要性を強調した。
関連論文リスト
- AstaBench: Rigorous Benchmarking of AI Agents with a Scientific Research Suite [75.58737079136942]
本稿では,AstaBenchについて紹介する。AstaBenchは,科学的研究を行うためのエージェント能力の総合的な測定を行うスイートである。
私たちのスイートには、プロダクショングレードの検索ツールを備えた、最初の科学研究環境が付属しています。
22のエージェントクラスで57のエージェントを評価したところ,いくつかの興味深い結果が得られた。
論文 参考訳(メタデータ) (2025-10-24T17:10:26Z) - A Rigorous Benchmark with Multidimensional Evaluation for Deep Research Agents: From Answers to Reports [24.09178055088843]
Deep Research Agents (DRA)は、タスク分解、クロスソース検索、多段階推論、構造化出力の能力を示す。
本稿では,DRAとレポートスタイルの応答に適した厳密なベンチマークと多次元評価フレームワークを提案する。
このフレームワークは、DRAが生成した長期レポートの総合的な評価を可能にし、セマンティックな品質、トピックの焦点、検索の信頼性のための総合的なスコアリング指標を統合する。
論文 参考訳(メタデータ) (2025-10-02T16:40:02Z) - DRBench: A Realistic Benchmark for Enterprise Deep Research [81.49694432639406]
DRBenchは、エンタープライズ環境で複雑でオープンなディープリサーチタスクでAIエージェントを評価するためのベンチマークである。
セールス、サイバーセキュリティ、コンプライアンスなど10のドメインにわたる15のディープリサーチタスクをリリースしています。
論文 参考訳(メタデータ) (2025-09-30T18:47:20Z) - WebWeaver: Structuring Web-Scale Evidence with Dynamic Outlines for Open-Ended Deep Research [73.58638285105971]
本稿では,AIエージェントが膨大なWebスケール情報を洞察に富むレポートに合成しなければならない複雑な課題であるtextbfopen-ended Deep Research (OEDR) に取り組む。
人間の研究プロセスをエミュレートする新しいデュアルエージェントフレームワークである textbfWebWeaver を紹介する。
私たちのフレームワークは、DeepResearch Bench、DeepConsult、DeepResearchGymなど、主要なOEDRベンチマークにまたがる最先端の新たなベンチマークを確立しています。
論文 参考訳(メタデータ) (2025-09-16T17:57:21Z) - Deep Research: A Survey of Autonomous Research Agents [33.96146020332329]
大規模言語モデル(LLM)の急速な進歩は、複雑なタスクを自律的に実行可能なエージェントシステムの開発を促している。
これらの制約を克服するため、深層研究のパラダイムが提案され、エージェントは、Webベースの証拠に根ざした包括的で忠実な分析レポートを生成するために、計画、検索、合成に積極的に従事する。
本稿では,計画,質問開発,Web探索,レポート生成の4段階からなるディープリサーチパイプラインの体系的概要について述べる。
論文 参考訳(メタデータ) (2025-08-18T09:26:14Z) - Characterizing Deep Research: A Benchmark and Formal Definition [24.523394260858822]
本稿では,Deep Research (DR) タスクの形式的特徴付けと,DRシステムの性能評価のためのベンチマークを提案する。
ディープリサーチのコアとなる特徴は、レポートスタイルのアウトプットの生成ではなく、検索プロセスで必要となる概念に対する高いファンアウトである、と我々は主張する。
論文 参考訳(メタデータ) (2025-08-06T08:09:28Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
検索強化生成(RAG)の形式を評価するための新しいベンチマークを提案する。
RAGは、多種多様な、しかし関連するソースに対して、ソースを意識したマルチホップ推論を必要とする。
製品計画、開発、サポートステージをまたいだビジネスをシミュレートする合成データパイプラインを使用して構築します。
論文 参考訳(メタデータ) (2025-06-29T08:34:59Z) - Deep Research Agents: A Systematic Examination And Roadmap [109.53237992384872]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents [30.768405850755602]
DeepResearch Benchは100のPhDレベルの研究タスクからなるベンチマークである。
ディープリサーチエージェントの評価は本質的に複雑で、労働集約的である。
本稿では,人間の判断に強く適合する2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2025-06-13T13:17:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。