論文の概要: CometNet: Contextual Motif-guided Long-term Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2511.08049v1
- Date: Thu, 13 Nov 2025 01:36:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 14:36:37.057497
- Title: CometNet: Contextual Motif-guided Long-term Time Series Forecasting
- Title(参考訳): CometNet: コンテキストモチフガイドによる時系列予測
- Authors: Weixu Wang, Xiaobo Zhou, Xin Qiao, Lei Wang, Tie Qiu,
- Abstract要約: 長期の時系列予測は多くの重要な領域で重要である。
メインストリームトランスフォーマーとマルチレイヤパーセプトロン(MLP)ベースの手法は、主に有限ルックバックウィンドウに依存している。
我々は,コメットネット(CometNet)を提案する。
- 参考スコア(独自算出の注目度): 10.42683988784043
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term Time Series Forecasting is crucial across numerous critical domains, yet its accuracy remains fundamentally constrained by the receptive field bottleneck in existing models. Mainstream Transformer- and Multi-layer Perceptron (MLP)-based methods mainly rely on finite look-back windows, limiting their ability to model long-term dependencies and hurting forecasting performance. Naively extending the look-back window proves ineffective, as it not only introduces prohibitive computational complexity, but also drowns vital long-term dependencies in historical noise. To address these challenges, we propose CometNet, a novel Contextual Motif-guided Long-term Time Series Forecasting framework. CometNet first introduces a Contextual Motif Extraction module that identifies recurrent, dominant contextual motifs from complex historical sequences, providing extensive temporal dependencies far exceeding limited look-back windows; Subsequently, a Motif-guided Forecasting module is proposed, which integrates the extracted dominant motifs into forecasting. By dynamically mapping the look-back window to its relevant motifs, CometNet effectively harnesses their contextual information to strengthen long-term forecasting capability. Extensive experimental results on eight real-world datasets have demonstrated that CometNet significantly outperforms current state-of-the-art (SOTA) methods, particularly on extended forecast horizons.
- Abstract(参考訳): 長期時系列予測は、多くの重要な領域において重要であるが、その精度は、既存のモデルにおける受容的フィールドボトルネックによって根本的な制約を受け続けている。
メインストリームトランスフォーマーおよびマルチレイヤパーセプトロン(MLP)ベースの手法は、主に有限ルックバックウィンドウに依存し、長期依存をモデル化し、予測性能を損なう能力を制限する。
振り返りウィンドウを内在的に拡張することは、不正な計算複雑性をもたらすだけでなく、歴史的騒音における重要な長期的依存を沈静化させるため、効果がないことを証明している。
これらの課題に対処するため,コメットネット (CometNet) を提案する。
CometNetはまず、複雑な歴史的シーケンスから繰り返し、支配的なコンテキストモチーフを識別するコンテキストモチーフ抽出モジュールを導入し、限られたルックバックウインドウをはるかに超越した時間依存性を提供する。
CometNetは、ルックバックウィンドウを関連するモチーフに動的にマッピングすることで、コンテキスト情報を効果的に活用し、長期的な予測機能を強化します。
8つの実世界のデータセットに対する大規模な実験結果から、CometNetは現在のSOTA(State-of-the-art)手法、特に予測の地平線を著しく上回っていることが示されている。
関連論文リスト
- ForecastGAN: A Decomposition-Based Adversarial Framework for Multi-Horizon Time Series Forecasting [0.5213778368155993]
時系列予測は、ファイナンスからサプライチェーン管理までの領域で必須である。
本稿では,マルチホライズン予測のための新しい解析手法であるForecastGANを紹介する。
ForecastGANは、短期予測のための最先端のトランスフォーマーモデルより一貫して優れており、長期水平線では競争力を維持している。
論文 参考訳(メタデータ) (2025-11-06T15:19:23Z) - A Unified Frequency Domain Decomposition Framework for Interpretable and Robust Time Series Forecasting [81.73338008264115]
時系列予測の現在のアプローチは、時間領域であれ周波数領域であれ、主に線形層やトランスフォーマーに基づいたディープラーニングモデルを使用する。
本稿では,多種多様な時系列を数学的に抽象化する統合周波数領域分解フレームワークFIREを提案する。
火は長期予測ベンチマークで最先端のモデルを一貫して上回る。
論文 参考訳(メタデータ) (2025-10-11T09:59:25Z) - Accuracy Law for the Future of Deep Time Series Forecasting [65.46625911002202]
時系列予測は、部分的に観測可能で不確実な性質のため、本質的にゼロでない誤差の低い境界に直面する。
本稿では、ディープ時系列予測の性能上限をどうやって推定するかという根本的な問題に焦点をあてる。
新たに訓練された2,800以上の深層予測器の厳密な統計的テストに基づいて、深部モデルの最小予測誤差とウィンドウワイズ級数パターンの複雑さとの間に有意な指数関数的関係を見出した。
論文 参考訳(メタデータ) (2025-10-03T05:18:47Z) - Test Time Learning for Time Series Forecasting [1.4605709124065924]
テストタイムトレーニング(TTT)モジュールは、MambaベースのTimeMachineなど、最先端モデルよりも一貫して優れている。
その結果,平均二乗誤差 (MSE) と平均絶対誤差 (MAE) に有意な改善が認められた。
この研究は、時系列予測の新しいベンチマークを設定し、スケーラブルで高性能な予測モデルにおける将来の研究の基礎を定めている。
論文 参考訳(メタデータ) (2024-09-21T04:40:08Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
時系列予測(LTSF)は時系列分析において重要なフロンティアである。
本研究は, 分析的および実証的な証拠から, 分解が過剰なモデルインフレーションを包含する鍵であることを実証する。
興味深いことに、時系列データの本質的なダイナミクスに分解を合わせることで、提案モデルは既存のベンチマークより優れている。
論文 参考訳(メタデータ) (2024-01-22T13:15:40Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - MPR-Net:Multi-Scale Pattern Reproduction Guided Universality Time Series
Interpretable Forecasting [13.790498420659636]
時系列予測は、その広範な応用が本質的に困難なため、既存の研究から幅広い関心を集めている。
本稿では,まず,畳み込み操作を用いてマルチスケールの時系列パターンを適応的に分解し,パターン再現の既知に基づいてパターン拡張予測手法を構築し,最終的に畳み込み操作を用いて将来的なパターンを再構築する。
時系列に存在する時間的依存関係を活用することで、MPR-Netは線形時間複雑性を達成するだけでなく、予測プロセスも解釈できる。
論文 参考訳(メタデータ) (2023-07-13T13:16:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。