論文の概要: Simulation-Based Fitting of Intractable Models via Sequential Sampling and Local Smoothing
- arxiv url: http://arxiv.org/abs/2511.08180v1
- Date: Wed, 12 Nov 2025 01:45:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-12 20:17:03.681971
- Title: Simulation-Based Fitting of Intractable Models via Sequential Sampling and Local Smoothing
- Title(参考訳): 逐次サンプリングと局所平滑化による難解モデルのシミュレーションに基づくフィッティング
- Authors: Guido Masarotto,
- Abstract要約: このアルゴリズムは、ソリューションの領域を特定することを目的としたグローバル検索フェーズと、準線形推定器を計算するためのフィッシャースコアリングアルゴリズムの信頼領域バージョンを模倣したローカル検索フェーズを組み合わせる。
このアルゴリズムを実装したRパッケージは、CRANで入手できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive algorithm for fitting generative models whose likelihood, moments, and other quantities typically used for inference are not analytically or numerically tractable. The proposed method aims to provide a general solution that requires only limited prior information on the model parameters. The algorithm combines a global search phase, aimed at identifying the region of the solution, with a local search phase that mimics a trust region version of the Fisher scoring algorithm for computing a quasi-likelihood estimator. Comparisons with alternative methods demonstrate the strong performance of the proposed approach. An R package implementing the algorithm is available on CRAN.
- Abstract(参考訳): 本稿では,解析的にも数値的にも扱えない確率,モーメント,その他の量の生成モデルに適合する包括的アルゴリズムを提案する。
提案手法は,モデルパラメータの事前情報のみを必要とする一般解を提供することを目的としている。
このアルゴリズムは、ソリューションの領域を特定することを目的としたグローバル検索フェーズと、準線形推定器を計算するためのフィッシャースコアリングアルゴリズムの信頼領域バージョンを模倣したローカル検索フェーズを組み合わせる。
代替手法との比較は,提案手法の強い性能を示す。
このアルゴリズムを実装したRパッケージは、CRANで入手できる。
関連論文リスト
- Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
分散強化学習のための新しいゼロ階最適化アルゴリズムを提案する。
これにより、各エージェントはコンセンサスプロトコルを使わずに、コスト評価を独立してローカル勾配を推定できる。
論文 参考訳(メタデータ) (2021-07-26T18:11:07Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Approximate Bayesian inference from noisy likelihoods with Gaussian
process emulated MCMC [0.24275655667345403]
ガウス過程(GP)を用いた対数様関数をモデル化する。
主な方法論的革新は、正確なメトロポリス・ハスティングス(MH)サンプリングが行う進歩をエミュレートするためにこのモデルを適用することである。
得られた近似サンプリング器は概念的には単純で、試料効率が高い。
論文 参考訳(メタデータ) (2021-04-08T17:38:02Z) - Community Detection in the Stochastic Block Model by Mixed Integer
Programming [3.8073142980733]
Degree-Corrected Block Model (DCSBM) は、コミュニティ構造を持つランダムグラフを生成する一般的なモデルである。
DCSBMに基づくコミュニティ検出の標準的なアプローチは、最大推定(MLE)により観測されたネットワークデータを生成する可能性が最も高いモデルパラメータを探索することである。
本稿では,モデルパラメータと最大確率のコミュニティ割当を観測グラフから確実に求める数学的計画式と厳密解法を提案する。
論文 参考訳(メタデータ) (2021-01-26T22:04:40Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。