論文の概要: Macroscopic Emission Modeling of Urban Traffic Using Probe Vehicle Data: A Machine Learning Approach
- arxiv url: http://arxiv.org/abs/2511.08722v1
- Date: Thu, 13 Nov 2025 01:03:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.211062
- Title: Macroscopic Emission Modeling of Urban Traffic Using Probe Vehicle Data: A Machine Learning Approach
- Title(参考訳): プローブ車両データを用いた都市交通のマクロエミッションモデリング--機械学習によるアプローチ
- Authors: Mohammed Ali El Adlouni, Ling Jin, Xiaodan Xu, C. Anna Spurlock, Alina Lazar, Kaveh Farokhi Sadabadi, Mahyar Amirgholy, Mona Asudegi,
- Abstract要約: 都市渋滞は車両の非効率な移動を引き起こし、温室効果ガスの排出を悪化させ、都市大気汚染を引き起こす。
本研究は,米国都市部における交通関係のネットワーク広排出率を大規模に予測する機械学習手法を初めて適用したものである。
- 参考スコア(独自算出の注目度): 1.2338647942124328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban congestions cause inefficient movement of vehicles and exacerbate greenhouse gas emissions and urban air pollution. Macroscopic emission fundamental diagram (eMFD)captures an orderly relationship among emission and aggregated traffic variables at the network level, allowing for real-time monitoring of region-wide emissions and optimal allocation of travel demand to existing networks, reducing urban congestion and associated emissions. However, empirically derived eMFD models are sparse due to historical data limitation. Leveraging a large-scale and granular traffic and emission data derived from probe vehicles, this study is the first to apply machine learning methods to predict the network wide emission rate to traffic relationship in U.S. urban areas at a large scale. The analysis framework and insights developed in this work generate data-driven eMFDs and a deeper understanding of their location dependence on network, infrastructure, land use, and vehicle characteristics, enabling transportation authorities to measure carbon emissions from urban transport of given travel demand and optimize location specific traffic management and planning decisions to mitigate network-wide emissions.
- Abstract(参考訳): 都市渋滞は車両の非効率な移動を引き起こし、温室効果ガスの排出を悪化させ、都市大気汚染を引き起こす。
マクロ的エミッション基本図(eMFD)は、ネットワークレベルでの排出と集約されたトラフィック変数間の秩序的な関係をキャプチャし、地域全体の排出のリアルタイムモニタリングと既存のネットワークへの旅行需要の最適配分を可能にし、都市の混雑と関連する排出を減らす。
しかし、経験的に導出されたeMFDモデルは、歴史的データ制限のために疎結合である。
調査車両から得られた大規模・粒度の交通・排出データを活用し, 大規模都市部における交通関係にネットワーク広帯域の排出率を予測する機械学習手法を初めて適用した。
この研究で開発された分析フレームワークと洞察は、データ駆動のeMFDを生成し、ネットワーク、インフラ、土地利用、車両特性への位置依存をより深く理解し、交通機関が所定の交通需要の都市交通から二酸化炭素排出量を計測し、位置特定交通管理とネットワーク全体の排出削減のための計画決定を最適化することを可能にする。
関連論文リスト
- ON-Traffic: An Operator Learning Framework for Online Traffic Flow Estimation and Uncertainty Quantification from Lagrangian Sensors [0.0]
この研究は、新しいディープ演算子であるOn-Trafficを導入し、トラフィック状態のオンライン推定に適した水平方向学習ベースのフレームワークを提案する。
本フレームワークは,不規則でスパースな入力データを処理し,時間シフトに適応し,精度の高い不確実性推定を行うことのできる,数値データとシミュレーションデータの両方で評価される。
その結果, 衝撃波や混雑伝播などの複雑な交通シナリオを捉えるとともに, 騒音やセンサの落下に対する堅牢性を維持していることがわかった。
論文 参考訳(メタデータ) (2025-03-18T09:13:24Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Differentiable Predictive Control for Large-Scale Urban Road Networks [1.3414298287600035]
輸送は二酸化炭素の排出に大きく貢献している。
本稿では,微分予測制御(DPC)を用いた新しい交通ネットワーク制御手法を提案する。
提案手法では,計算時間を最大4桁削減し,トラヒック性能を最大37%向上させる。
論文 参考訳(メタデータ) (2024-06-14T22:42:02Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Building Transportation Foundation Model via Generative Graph
Transformer [12.660129805049664]
本稿では,交通シミュレーションの原理を交通予測に統合した交通基盤モデル(TFM)を提案する。
TFMは、移動系アクターの参加行動と相互作用を捉えるために、グラフ構造と動的グラフ生成アルゴリズムを使用する。
このデータ駆動・モデルフリーシミュレーション手法は、構造的複雑性とモデル精度の観点から、従来のシステムで直面する課題に対処する。
論文 参考訳(メタデータ) (2023-05-24T07:34:15Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
渋滞や事故の場合に交通が後進的に伝播し,道路の他の部分への全体的影響を示す。
また、実時間トラフィックデータに基づいて連続的なRNN-LSTM(Long Short-Term Memory)ディープラーニングモデルを訓練し、道路固有の渋滞に基づいてシミュレーション結果の精度を評価する。
論文 参考訳(メタデータ) (2023-04-01T01:23:10Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Network Impacts of Automated Mobility-on-Demand: A Macroscopic
Fundamental Diagram Perspective [0.0]
Automated Mobility on Demand (AMOD)は、将来の都市モビリティを改善するための有望なソリューションである。
本稿では,AMODの高忠実度活動とエージェントベース交通シミュレーションによるネットワークへの影響について検討する。
論文 参考訳(メタデータ) (2020-11-10T13:39:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。