論文の概要: Not Everything That Counts Can Be Counted: A Case for Safe Qualitative AI
- arxiv url: http://arxiv.org/abs/2511.09325v1
- Date: Thu, 13 Nov 2025 01:46:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-13 22:34:54.521422
- Title: Not Everything That Counts Can Be Counted: A Case for Safe Qualitative AI
- Title(参考訳): 数えるものすべてではない:安全な質的AIのケース
- Authors: Stine Beltoft, Lukas Galke,
- Abstract要約: 我々は、解釈研究のためにゼロから構築された定性的なAIシステムを開発することについて論じる。
我々は、既存の自動発見パイプラインが堅牢な質的能力によってどのように拡張されるかを示す最近の文献をレビューする。
- 参考スコア(独自算出の注目度): 2.943914288677608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) and large language models (LLM) are reshaping science, with most recent advances culminating in fully-automated scientific discovery pipelines. But qualitative research has been left behind. Researchers in qualitative methods are hesitant about AI adoption. Yet when they are willing to use AI at all, they have little choice but to rely on general-purpose tools like ChatGPT to assist with interview interpretation, data annotation, and topic modeling - while simultaneously acknowledging these system's well-known limitations of being biased, opaque, irreproducible, and privacy-compromising. This creates a critical gap: while AI has substantially advanced quantitative methods, the qualitative dimensions essential for meaning-making and comprehensive scientific understanding remain poorly integrated. We argue for developing dedicated qualitative AI systems built from the ground up for interpretive research. Such systems must be transparent, reproducible, and privacy-friendly. We review recent literature to show how existing automated discovery pipelines could be enhanced by robust qualitative capabilities, and identify key opportunities where safe qualitative AI could advance multidisciplinary and mixed-methods research.
- Abstract(参考訳): 人工知能(AI)と大規模言語モデル(LLM)は科学を変えつつある。
しかし、質的研究は残されている。
定性的手法の研究者たちは、AIの採用をためらっている。
しかし、AIを全く使いたくない場合、インタビューの解釈、データアノテーション、トピックモデリングを支援するためにChatGPTのような汎用ツールに頼る以外に選択肢はない。
AIはかなり高度な量的手法を持っているが、意味作りと包括的な科学的理解に不可欠な質的な次元は、いまだに十分に統合されていない。
我々は、解釈研究のためにゼロから構築された定性的なAIシステムを開発することについて論じる。
このようなシステムは透明で再現可能で、プライバシーに優しいものでなければならない。
我々は、既存の自動発見パイプラインが堅牢な質的能力によってどのように強化されるかを示す最近の文献をレビューし、安全な質的AIが多分野と混合メソッドの研究を前進させる重要な機会を特定する。
関連論文リスト
- Towards the Next Generation of Software: Insights from Grey Literature on AI-Native Applications [13.876049229274114]
AIネイティブアプリケーションは、ソフトウェアの設計、開発、進化の方法を根本的に再定義する、ソフトウェアエンジニアリングの新しいパラダイムである。
人気が高まっているにもかかわらず、AIネイティブアプリケーションには、統一されたエンジニアリング定義とアーキテクチャの青写真がない。
本研究は、AIネイティブアプリケーションの定義特性、キー品質特性、および典型的な技術スタックを識別することにより、AIネイティブアプリケーションの包括的な理解を確立することを目的とする。
論文 参考訳(メタデータ) (2025-09-16T15:01:23Z) - AI-Driven Automation Can Become the Foundation of Next-Era Science of Science Research [58.944125758758936]
科学科学(Science of Science, SoS)は、科学的発見の基礎となるメカニズムを探求する。
人工知能(AI)の出現は、次世代のSoSに変革の機会をもたらす。
我々は、従来の手法よりもAIの利点を概説し、潜在的な制限について議論し、それらを克服するための経路を提案する。
論文 参考訳(メタデータ) (2025-05-17T15:01:33Z) - Work in Progress: AI-Powered Engineering-Bridging Theory and Practice [0.0]
本稿では,システム工学の重要なステップを自動化し,改善する上で,生成AIがいかに役立つかを考察する。
INCOSEの"よい要件"基準に基づいて、システム要件を分析するAIの能力を調べる。
この研究は、エンジニアリングプロセスを合理化し、学習結果を改善するAIの可能性を評価することを目的としている。
論文 参考訳(メタデータ) (2025-02-06T17:42:00Z) - AI in the Cosmos [0.0]
情報源分類、スペクトルエネルギー分布モデリングなど、天体物理学におけるAI応用例を強調し、生成AIによる達成可能な進歩について議論する。
AIの使用は、バイアスやエラー、AIモデルの“ブラックボックス”といった課題を導入している。
これらの問題は、人間の専門知識とドメイン固有の知識をAIアプリケーションに統合するHG-AI(Human-Guided AI)の概念を通じて解決することができる。
論文 参考訳(メタデータ) (2024-12-13T12:30:11Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
我々は人間の知恵について知られているものを調べ、そのAIのビジョンをスケッチする。
AIシステムは特にメタ認知に苦しむ。
スマートAIのベンチマーク、トレーニング、実装について論じる。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Evaluating General-Purpose AI with Psychometrics [43.85432514910491]
本稿では,大規模言語モデルなどの汎用AIシステムの包括的かつ正確な評価の必要性について論じる。
現在の評価手法は、主に特定のタスクのベンチマークに基づいており、これらの汎用AIシステムを適切に評価するには不十分である。
これらの課題に対処するため,タスク指向評価から構成指向評価への移行を提案する。
論文 参考訳(メタデータ) (2023-10-25T05:38:38Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
解釈可能な機械学習(IML)は研究の緊急のトピックである。
本稿では,テキストデータと時系列データに適用される局所的,神経特異的な解釈プロセスに焦点を当てる。
論文 参考訳(メタデータ) (2021-04-13T09:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。