論文の概要: Convergence of Multiagent Learning Systems for Traffic control
- arxiv url: http://arxiv.org/abs/2511.11654v1
- Date: Mon, 10 Nov 2025 16:10:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:22.802338
- Title: Convergence of Multiagent Learning Systems for Traffic control
- Title(参考訳): 交通制御のためのマルチエージェント学習システムの収束性
- Authors: Sayambhu Sen, Shalabh Bhatnagar,
- Abstract要約: Qラーニングを用いた独立したエージェントとして各交通信号をモデル化するマルチエージェント強化学習(MARL)が,平均通勤遅延を低減するための有望な戦略として登場した。
本稿では,このマルチエージェント TSC アルゴリズムの理論的基礎に焦点をあてることで,ギャップを埋める。
- 参考スコア(独自算出の注目度): 6.65616155956618
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Rapid urbanization in cities like Bangalore has led to severe traffic congestion, making efficient Traffic Signal Control (TSC) essential. Multi-Agent Reinforcement Learning (MARL), often modeling each traffic signal as an independent agent using Q-learning, has emerged as a promising strategy to reduce average commuter delays. While prior work Prashant L A et. al has empirically demonstrated the effectiveness of this approach, a rigorous theoretical analysis of its stability and convergence properties in the context of traffic control has not been explored. This paper bridges that gap by focusing squarely on the theoretical basis of this multi-agent algorithm. We investigate the convergence problem inherent in using independent learners for the cooperative TSC task. Utilizing stochastic approximation methods, we formally analyze the learning dynamics. The primary contribution of this work is the proof that the specific multi-agent reinforcement learning algorithm for traffic control is proven to converge under the given conditions extending it from single agent convergence proofs for asynchronous value iteration.
- Abstract(参考訳): バンガロールのような都市部での急速な都市化は交通渋滞を招き、効率的な交通信号制御(TSC)が不可欠である。
Qラーニングを用いた独立したエージェントとして各交通信号をモデル化するマルチエージェント強化学習(MARL)が,平均通勤遅延を低減するための有望な戦略として登場した。
前作『Prashant L A』など。
アルはこのアプローチの有効性を実証的に実証しており、交通制御の文脈における安定性と収束性に関する厳密な理論的分析は行われていない。
本稿では,このマルチエージェントアルゴリズムの理論的基礎に焦点をあてることで,そのギャップを埋める。
本研究では,協調学習における独立した学習者を用いた収束問題について検討する。
確率近似法を用いて学習力学を解析する。
この研究の主な貢献は、トラフィック制御のための特定のマルチエージェント強化学習アルゴリズムが、非同期値反復の単一エージェント収束証明から拡張された所定の条件下で収束することが証明されていることである。
関連論文リスト
- Single-agent Reinforcement Learning Model for Regional Adaptive Traffic Signal Control [5.170416022609791]
本研究は、プローブ車両技術と互換性のある単一エージェントRLに基づく地域交通信号制御モデルを提案する。
RL設計の主要なコンポーネントは状態、アクション、報酬関数の定義である。
実験により,提案手法は協調型多区間制御により,大規模領域の混雑レベルを効果的に緩和することを示した。
論文 参考訳(メタデータ) (2025-11-01T13:29:13Z) - Robust Single-Agent Reinforcement Learning for Regional Traffic Signal Control Under Demand Fluctuations [5.784337914162491]
交通渋滞は、主に交差点の待ち行列によって引き起こされ、都市生活水準、安全性、環境品質、経済効率に大きな影響を及ぼす。
本研究では,地域適応型TSCのための新しい単エージェント強化学習フレームワークを提案する。
このフレームワークは堅牢な反ゆらぎ能力を示し、待ち時間を大幅に短縮する。
論文 参考訳(メタデータ) (2025-11-01T13:18:50Z) - CoLLMLight: Cooperative Large Language Model Agents for Network-Wide Traffic Signal Control [7.0964925117958515]
交通信号制御(TSC)は,交通流の最適化と混雑緩和によって都市交通管理において重要な役割を担っている。
既存のアプローチでは、エージェント間の調整に必要な問題に対処できない。
TSCのための協調LLMエージェントフレームワークであるCoLLMLightを提案する。
論文 参考訳(メタデータ) (2025-03-14T15:40:39Z) - Toward Dependency Dynamics in Multi-Agent Reinforcement Learning for Traffic Signal Control [8.312659530314937]
適応的な信号制御のためのデータ駆動型アプローチとして強化学習(RL)が出現する。
本稿では,DQN-DPUS(Deep Q-Network)のための動的強化更新戦略を提案する。
提案手法は最適探索を犠牲にすることなく収束速度を向上できることを示す。
論文 参考訳(メタデータ) (2025-02-23T15:29:12Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs [47.600901884970845]
本稿では,マルチエージェント強化学習(MARL)を用いて,無線ローカルネットワークにおける分散チャネルアクセスに対処する。
特に、エージェントがモデルトレーニングに価値ベースまたはポリシーベースの強化学習アルゴリズムを不均一に採用する、より実践的なケースについて考察する。
我々は、分散実行パラダイムを用いた集中型トレーニングを採用し、異種エージェントの協調を可能にする、異種MARLトレーニングフレームワークQPMIXを提案する。
論文 参考訳(メタデータ) (2024-12-18T13:50:31Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Independent Reinforcement Learning for Weakly Cooperative Multiagent
Traffic Control Problem [22.733542222812158]
本研究では,irl(independent reinforcement learning)を用いて複雑な交通協調制御問題を解く。
そこで, 交通制御問題を部分的に観測可能な弱協調交通モデル (PO-WCTM) としてモデル化し, 交差点群全体の交通状況を最適化する。
実験の結果,CIL-DDQNはトラヒック制御問題のほぼすべての性能指標において,他の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-04-22T07:55:46Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
CAV(コネクテッド・アンド・自律車両)の自律制御設計のための新しい統合学習(FL)フレームワークの提案
CAVの移動性、無線フェーディングチャネル、および不均衡で非独立で同一に分散されたデータを考慮に入れた新しい動的フェデレーション・プロキシ(DFP)アルゴリズムが提案されている。
最適制御器を用いてCAVがどの程度の速度で収束するかを同定するために,提案アルゴリズムに対して厳密な収束解析を行う。
論文 参考訳(メタデータ) (2021-02-05T19:57:47Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。