論文の概要: Sample-based training of quantum generative models
- arxiv url: http://arxiv.org/abs/2511.11802v1
- Date: Fri, 14 Nov 2025 19:00:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:23.317195
- Title: Sample-based training of quantum generative models
- Title(参考訳): 量子生成モデルのサンプルベーストレーニング
- Authors: Maria Demidik, Cenk Tüysüz, Michele Grossi, Karl Jansen,
- Abstract要約: 我々は、量子モデルに対する対照的な発散の原理を拡張するトレーニングフレームワークを導入する。
回路構造を導出し、構成のための一般的なレシピを提供することで、パラメータ更新に必要なサンプルを生成する量子回路を得る。
- 参考スコア(独自算出の注目度): 1.3521721488318912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers can efficiently sample from probability distributions that are believed to be classically intractable, providing a foundation for quantum generative modeling. However, practical training of such models remains challenging, as gradient evaluation via the parameter-shift rule scales linearly with the number of parameters and requires repeated expectation-value estimation under finite-shot noise. We introduce a training framework that extends the principle of contrastive divergence to quantum models. By deriving the circuit structure and providing a general recipe for constructing it, we obtain quantum circuits that generate the samples required for parameter updates, yielding constant scaling with respect to the cost of a forward pass, analogous to backpropagation in classical neural networks. Numerical results demonstrate that it attains comparable accuracy to likelihood-based optimization while requiring substantially fewer samples. The framework thereby establishes a scalable route to training expressive quantum generative models directly on quantum hardware.
- Abstract(参考訳): 量子コンピュータは古典的に難解な確率分布から効率的にサンプリングすることができ、量子生成モデリングの基礎となる。
しかし、パラメータシフト則による勾配評価はパラメータ数と線形にスケールし、有限ショット雑音下での繰り返し期待値推定を必要とするため、そのようなモデルの実践的な訓練は依然として困難である。
我々は、量子モデルに対する対照的な発散の原理を拡張するトレーニングフレームワークを導入する。
回路構造を導出し、それを構築するための一般的なレシピを提供することで、パラメータ更新に必要なサンプルを生成する量子回路を取得し、古典的ニューラルネットワークのバックプロパゲーションに類似した、前方通過のコストに対して一定のスケーリングをもたらす。
数値的な結果から、かなり少ないサンプルを必要としながら、確率ベースの最適化に匹敵する精度が得られることが示されている。
このフレームワークは、量子ハードウェア上で表現力のある量子生成モデルをトレーニングするためのスケーラブルなルートを確立する。
関連論文リスト
- A purely Quantum Generative Modeling through Unitary Scrambling and Collapse [6.647966634235082]
量子スクランブルと崩壊生成モデル(Quantum Scrambling and Collapse Generative Model, QGen)は、古典的な依存関係を排除する純粋量子パラダイムである。
本研究では,学習をトラクタブルなサブプロブレムに分解し,バレンプラトーを緩和する測定に基づく学習原理を導入する。
経験的に、QGenは、有限ショットサンプリングの下で堅牢性を維持しながら、一致したパラメータ予算の下で古典的およびハイブリッド的ベースラインを上回っている。
論文 参考訳(メタデータ) (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [50.95799256262098]
変分量子回路(VQC)は量子機械学習を約束するが、表現性、訓練性、耐雑音性の課題に直面している。
本稿では,VQCが学習中に古典多層パーセプトロンの第一層重みを生成するハイブリッドアーキテクチャであるVQC-MLPNetを提案する。
論文 参考訳(メタデータ) (2025-06-12T01:38:15Z) - Flowing Through Hilbert Space: Quantum-Enhanced Generative Models for Lattice Field Theory [0.9208007322096533]
このような状態下での量子強調サンプリングを探索するために,ハイブリッド量子古典正規化フローモデルを開発した。
提案手法では,パラメータ化量子回路を古典正規化フローアーキテクチャに組み込み,振幅エンコーディングと量子絡み合いを利用して生成過程における表現性を高める。
論文 参考訳(メタデータ) (2025-05-15T17:58:16Z) - Train on classical, deploy on quantum: scaling generative quantum machine learning to a thousand qubits [0.27309692684728604]
量子回路に基づく瞬時生成モデルは,古典的ハードウェア上で効率的に学習可能であることを示す。
データ依存型パラメータ初期化戦略と組み合わせることで、不規則な高原の問題に遭遇することはない。
量子モデルは高次元データからうまく学習でき、単純なエネルギーベースの古典的生成モデルと比較して驚くほどよく機能する。
論文 参考訳(メタデータ) (2025-03-04T19:00:02Z) - Quantum Latent Diffusion Models [65.16624577812436]
本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
論文 参考訳(メタデータ) (2025-01-19T21:24:02Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [62.46800898243033]
量子学習理論の最近の進歩は、様々な古典的な入力によって生成された測定データから、大きな量子ビット回路の線形特性を効率的に学習できるのか?
我々は、小さな予測誤差を達成するためには、$d$で線形にスケーリングするサンプルの複雑さが必要であることを証明し、それに対応する計算複雑性は、dで指数関数的にスケールする可能性がある。
そこで本研究では,古典的影と三角展開を利用したカーネルベースの手法を提案し,予測精度と計算オーバーヘッドとのトレードオフを制御可能とした。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Parameterized quantum circuits as universal generative models for continuous multivariate distributions [1.118478900782898]
量子回路は、回帰、分類、生成タスクにおける機械学習モデルの基盤として広く使われている。
本研究では,予測値のサンプリングベースモデルを解明し,そのような変動量子アルゴリズムの普遍性を証明する。
我々の結果は、生成的モデリングタスクにおける将来の量子回路の設計を導くのに役立つかもしれない。
論文 参考訳(メタデータ) (2024-02-15T10:08:31Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Flexible Model Aggregation for Quantile Regression [92.63075261170302]
量子回帰は、予測の不確実性を定量化する必要性によって動機付けられた統計学習の基本的な問題である。
条件付き量子モデルの任意の数を集約する手法について検討する。
この論文で検討するモデルはすべて、現代のディープラーニングツールキットに適合します。
論文 参考訳(メタデータ) (2021-02-26T23:21:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。