論文の概要: AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions
- arxiv url: http://arxiv.org/abs/2511.13525v1
- Date: Mon, 17 Nov 2025 15:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-18 14:36:25.345883
- Title: AI Fairness Beyond Complete Demographics: Current Achievements and Future Directions
- Title(参考訳): 完全なデモグラフィックを超えたAIフェアネス:現在の成果と今後の方向性
- Authors: Zichong Wang, Zhipeng Yin, Roland H. C. Yap, Wenbin Zhang,
- Abstract要約: この調査は、人口統計が不完全である場合のAIの公正性を調べ、従来のアプローチと現実世界の課題のギャップに対処する。
本研究では, 公正概念の新たな分類法を導入し, それらの関係と区別を明らかにした。
- 参考スコア(独自算出の注目度): 12.299304184943237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in artificial intelligence (AI) has become a growing concern due to discriminatory outcomes in AI-based decision-making systems. While various methods have been proposed to mitigate bias, most rely on complete demographic information, an assumption often impractical due to legal constraints and the risk of reinforcing discrimination. This survey examines fairness in AI when demographics are incomplete, addressing the gap between traditional approaches and real-world challenges. We introduce a novel taxonomy of fairness notions in this setting, clarifying their relationships and distinctions. Additionally, we summarize existing techniques that promote fairness beyond complete demographics and highlight open research questions to encourage further progress in the field.
- Abstract(参考訳): 人工知能(AI)の公正さは、AIベースの意思決定システムにおける差別的な結果によって、懸念が高まっている。
バイアスを軽減する様々な方法が提案されているが、ほとんどが完全な人口統計情報に依存している。
この調査は、人口統計が不完全である場合のAIの公正性を調べ、従来のアプローチと現実世界の課題のギャップに対処する。
本研究では, 公正概念の新たな分類法を導入し, それらの関係と区別を明らかにした。
さらに,完全な人口動態を超えて公正性を促進する既存の手法を要約し,オープンな研究課題を強調し,この分野のさらなる進歩を促す。
関連論文リスト
- Partial Identification Approach to Counterfactual Fairness Assessment [50.88100567472179]
未知の対実的公正度尺度を高い信頼性で有界化するためのベイズ的アプローチを導入する。
以上の結果から、人種をアフリカ系アメリカ人に転換する際のCompASスコアに対する肯定的な(不快な)効果と、若年から高齢に移行する際の否定的な(直接的な因果関係)効果が明らかとなった。
論文 参考訳(メタデータ) (2025-09-30T18:35:08Z) - FairAIED: Navigating Fairness, Bias, and Ethics in Educational AI Applications [8.443431821420537]
教育におけるAIの統合は、学習経験をパーソナライズし、教育実践を変革する大きな可能性を秘めている。
研究者がこれらのバイアスを理解して緩和しようとすると、教育AIの公平性を調べる研究が増えている。
この調査は、教育AIにおけるアルゴリズムフェアネスの総合的な体系的なレビューを提供する。
論文 参考訳(メタデータ) (2024-07-26T13:59:20Z) - A Survey on Intersectional Fairness in Machine Learning: Notions,
Mitigation, and Challenges [11.885166133818819]
機械学習システムの採用により、公平性への懸念が高まっている。
公平さと緩和の交叉観念に関する分類を提示する。
重要な課題を特定し、今後の方向性に関するガイドラインを研究者に提供する。
論文 参考訳(メタデータ) (2023-05-11T16:49:22Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Fairness And Bias in Artificial Intelligence: A Brief Survey of Sources,
Impacts, And Mitigation Strategies [11.323961700172175]
この調査論文は、AIの公平性とバイアスに関する簡潔で包括的な概要を提供する。
我々は、データ、アルゴリズム、人間の決定バイアスなどのバイアス源をレビューする。
偏りのあるAIシステムの社会的影響を評価し,不平等の持続性と有害なステレオタイプの強化に着目した。
論文 参考訳(メタデータ) (2023-04-16T03:23:55Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Fair Decision-making Under Uncertainty [1.5688552250473473]
公平性制約を考慮した縦断的検閲学習問題について検討する。
検閲情報を含む新たに考案された公正概念と,検閲の存在下での公正な予測のための一般的な枠組みが,不確実性の下での計測と差別を可能にしていることを示す。
論文 参考訳(メタデータ) (2023-01-29T05:42:39Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。