論文の概要: Physics-Guided Inductive Spatiotemporal Kriging for PM2.5 with Satellite Gradient Constraints
- arxiv url: http://arxiv.org/abs/2511.16013v1
- Date: Thu, 20 Nov 2025 03:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.452341
- Title: Physics-Guided Inductive Spatiotemporal Kriging for PM2.5 with Satellite Gradient Constraints
- Title(参考訳): 衛星勾配制約PM2.5の物理誘導インダクティブ時空間研削
- Authors: Shuo Wang, Mengfan Teng, Yun Cheng, Lothar Thiele, Olga Saukh, Shuangshuang He, Yuanting Zhang, Jiang Zhang, Gangfeng Zhang, Xingyuan Yuan, Jingfang Fan,
- Abstract要約: 微粒子の高分解能マッピング (PM2.5) は持続可能な都市化の基盤であるが, 地中モニタリングネットワークの空間的疎結合性により, 依然として重要な障害となっている。
本研究では,インダクティブ・テンポラル・クリグのための新しいフレームワークであるspatio-Guided Inference Network (SPIN)を提案する。
- 参考スコア(独自算出の注目度): 15.082346657646902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-resolution mapping of fine particulate matter (PM2.5) is a cornerstone of sustainable urbanism but remains critically hindered by the spatial sparsity of ground monitoring networks. While traditional data-driven methods attempt to bridge this gap using satellite Aerosol Optical Depth (AOD), they often suffer from severe, non-random data missingness (e.g., due to cloud cover or nighttime) and inversion biases. To overcome these limitations, this study proposes the Spatiotemporal Physics-Guided Inference Network (SPIN), a novel framework designed for inductive spatiotemporal kriging. Unlike conventional approaches, SPIN synergistically integrates domain knowledge into deep learning by explicitly modeling physical advection and diffusion processes via parallel graph kernels. Crucially, we introduce a paradigm-shifting training strategy: rather than using error-prone AOD as a direct input, we repurpose it as a spatial gradient constraint within the loss function. This allows the model to learn structural pollution patterns from satellite data while remaining robust to data voids. Validated in the highly polluted Beijing-Tianjin-Hebei and Surrounding Areas (BTHSA), SPIN achieves a new state-of-the-art with a Mean Absolute Error (MAE) of 9.52 ug/m^3, effectively generating continuous, physically plausible pollution fields even in unmonitored areas. This work provides a robust, low-cost, and all-weather solution for fine-grained environmental management.
- Abstract(参考訳): 微粒子の高分解能マッピング (PM2.5) は持続可能な都市化の基盤であるが, 地中モニタリングネットワークの空間的疎結合性により, 依然として重要な障害となっている。
従来のデータ駆動方式では、衛星エアロゾル光学深度(AOD)を用いてこのギャップを埋めようとするが、厳しい非ランダムなデータ不足(雲の覆いや夜間のため)と逆バイアスに悩まされることが多い。
これらの制約を克服するために,時空間物理ガイド推論ネットワーク (SPIN) を提案する。
従来のアプローチとは異なり、SPINは並列グラフカーネルを介して物理対流および拡散過程を明示的にモデル化することにより、ドメイン知識をディープラーニングに相乗的に統合する。
重要なことに、我々はパラダイムシフトトレーニング戦略を導入し、直接入力としてエラー発生型AODを使用するのではなく、損失関数内の空間勾配制約として再利用する。
これにより、衛星データから構造汚染パターンを学習し、データの空白に頑健なままにすることができる。
高度に汚染された北京天津河辺・周辺地域(BTHSA)で検証され、SPINは9.52 ug/m^3の平均絶対誤差(MAE)を持つ新しい最先端の技術を達成し、監視されていない地域でも効果的に持続的かつ物理的に可塑性な汚染場を生成する。
この作業は、きめ細かい環境管理のための堅牢で低コストで全天候のソリューションを提供する。
関連論文リスト
- Synergistic Neural Forecasting of Air Pollution with Stochastic Sampling [50.3911487821783]
大気汚染は世界的な健康と環境のリスクの先駆けであり、特に山火事、都市干ばつ、塵嵐による大気汚染の急激な増加に弱い地域ではなおもである。
本稿では,気象および大気組成データを統合し,平均および極端汚染レベルの予測を改善する高分解能神経予測モデルであるSynCastを提案する。
論文 参考訳(メタデータ) (2025-10-28T01:18:00Z) - RainDiff: End-to-end Precipitation Nowcasting Via Token-wise Attention Diffusion [64.49056527678606]
本稿では,U-Net拡散モデルだけでなく,レーダ時間エンコーダにも統合されたトークンワイドアテンションを提案する。
従来の手法とは異なり,本手法は,画素空間拡散の典型的な高資源コストを発生させることなく,アーキテクチャに注意を集中させる。
実験と評価により,提案手法は複雑な降水予測シナリオにおいて,最先端の手法,ロバストネスの局所的忠実度,一般化,優位性を著しく上回ることを示した。
論文 参考訳(メタデータ) (2025-10-16T17:59:13Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T21:27:19Z) - Efficient Unsupervised Domain Adaptation Regression for Spatial-Temporal Sensor Fusion [6.963971634605796]
環境およびバイオメディカル領域における低コストで分散センサーネットワークは、継続的な大規模健康モニタリングを可能にしている。
これらのシステムは、センサーのドリフト、ノイズ、キャリブレーションの不十分に起因する劣化したデータ品質に関する課題に直面していることが多い。
センサフュージョンとキャリブレーションの伝統的な機械学習手法は、広範な機能工学に依存している。
回帰タスクに適した新しいunsupervised domain adapt(UDA)手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T12:20:57Z) - Causal Deciphering and Inpainting in Spatio-Temporal Dynamics via Diffusion Model [45.45700202300292]
CaPaintは2段階のプロセスで因果推論能力を備えたデータとエンドウモデルの因果領域を特定することを目的としている。
微調整未条件拡散確率モデル(DDPM)を生成前として, 環境成分として定義されたマスクを埋め込む。
5つの実世界のSTベンチマークで実施された実験は、CaPaintの概念の統合により、モデルが4.3%から77.3%の改善を達成できることを示した。
論文 参考訳(メタデータ) (2024-09-29T08:18:50Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Conditional diffusion models for downscaling & bias correction of Earth system model precipitation [1.5193424827619018]
本稿では,バイアス補正とダウンスケーリングを同時に行う機械学習フレームワークを提案する。
提案手法は, 統計的忠実性を確保し, 大規模空間パターンを保存し, 既存の手法より優れる。
論文 参考訳(メタデータ) (2024-04-05T11:01:50Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。