論文の概要: Toward Artificial Palpation: Representation Learning of Touch on Soft Bodies
- arxiv url: http://arxiv.org/abs/2511.16596v1
- Date: Thu, 20 Nov 2025 17:49:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.773744
- Title: Toward Artificial Palpation: Representation Learning of Touch on Soft Bodies
- Title(参考訳): 人工触診に向けて:ソフトボディへの触覚の表現学習
- Authors: Zohar Rimon, Elisei Shafer, Tal Tepper, Efrat Shimron, Aviv Tamar,
- Abstract要約: 薬品検査における触覚の使用である触覚は、ほぼ人間によってのみ行われる。
本研究では,自己教師あり学習に基づく人工的な触覚提示法の概念実証について検討する。
- 参考スコア(独自算出の注目度): 16.362724941286697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Palpation, the use of touch in medical examination, is almost exclusively performed by humans. We investigate a proof of concept for an artificial palpation method based on self-supervised learning. Our key idea is that an encoder-decoder framework can learn a $\textit{representation}$ from a sequence of tactile measurements that contains all the relevant information about the palpated object. We conjecture that such a representation can be used for downstream tasks such as tactile imaging and change detection. With enough training data, it should capture intricate patterns in the tactile measurements that go beyond a simple map of forces -- the current state of the art. To validate our approach, we both develop a simulation environment and collect a real-world dataset of soft objects and corresponding ground truth images obtained by magnetic resonance imaging (MRI). We collect palpation sequences using a robot equipped with a tactile sensor, and train a model that predicts sensory readings at different positions on the object. We investigate the representation learned in this process, and demonstrate its use in imaging and change detection.
- Abstract(参考訳): 薬品検査における触覚の使用である触覚は、ほぼ人間によってのみ行われる。
本研究では,自己教師あり学習に基づく人工的な触覚提示法の概念実証について検討する。
私たちのキーとなるアイデアは、エンコーダ-デコーダフレームワークが、触覚測定のシーケンスから$\textit{representation}$を学習できるということです。
このような表現は、触覚画像や変化検出などの下流タスクに使用できると推測する。
十分なトレーニングデータがあれば、現在の最先端技術である単純な力のマップを超えた、触覚測定の複雑なパターンをキャプチャできるはずだ。
提案手法の有効性を検証するため,我々はシミュレーション環境を開発し,軟質物体の現実的データセットと,磁気共鳴画像(MRI)により得られた地中真理像を収集する。
触覚センサを備えたロボットを用いて触覚系列を収集し,物体上の異なる位置で知覚読影を予測するモデルを訓練する。
本稿では,このプロセスで学んだ表現について検討し,イメージングと変化検出におけるその利用を実証する。
関連論文リスト
- Grasp Like Humans: Learning Generalizable Multi-Fingered Grasping from Human Proprioceptive Sensorimotor Integration [26.351720551267846]
触覚と審美的知覚は、人間の器用な操作に欠かせないものであり、感覚運動器統合による物体の確実な把握を可能にしている。
本研究では,人間の直感的・自然な操作から模倣学習に基づくロボット実行へのスキル伝達を把握するための,新しい手袋による触覚的知覚予測フレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-10T07:44:12Z) - PseudoTouch: Efficiently Imaging the Surface Feel of Objects for Robotic Manipulation [8.997347199266592]
低次元センサ信号に高次元構造情報をリンクするPseudoTouchを提案する。
低次元の視覚触覚埋め込みを学習し、そこから触覚信号を復号する深度パッチを符号化する。
学習したPseudoTouchモデルの有用性を、物体認識と把握安定性予測という2つの下流タスクで実証する。
論文 参考訳(メタデータ) (2024-03-22T10:51:31Z) - Neural feels with neural fields: Visuo-tactile perception for in-hand
manipulation [57.60490773016364]
マルチフィンガーハンドの視覚と触覚を組み合わせることで,手動操作時の物体の姿勢と形状を推定する。
提案手法であるNeuralFeelsは,ニューラルネットワークをオンラインで学習することでオブジェクトの形状を符号化し,ポーズグラフ問題を最適化して共同で追跡する。
私たちの結果は、タッチが少なくとも、洗練され、そして最も最良のものは、手動操作中に視覚的推定を曖昧にすることを示しています。
論文 参考訳(メタデータ) (2023-12-20T22:36:37Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
人間は触覚と触覚に頼っている。
視覚ベースの触覚センサーは、様々なロボット認識や制御タスクに広く利用されている。
本稿では,視覚に基づく触覚センサを用いた対話的知覚手法を提案する。
論文 参考訳(メタデータ) (2023-03-10T16:27:37Z) - Visual-Tactile Multimodality for Following Deformable Linear Objects
Using Reinforcement Learning [15.758583731036007]
本稿では,視覚と触覚入力を併用して変形可能な線形物体を追従するタスクを完遂する問題について検討する。
我々は,異なる感覚モーダルを用いた強化学習エージェントを作成し,その動作をどのように促進するかを検討する。
実験の結果,視覚入力と触覚入力の両方を使用することで,最大92%の症例で作業が完了することがわかった。
論文 参考訳(メタデータ) (2022-03-31T21:59:08Z) - Learning to Synthesize Volumetric Meshes from Vision-based Tactile
Imprints [26.118805500471066]
視覚ベースの触覚センサーは、通常、変形可能なエラストマーと上に取り付けられたカメラを使用して、コンタクトの高解像度な画像観察を行う。
本稿では,視覚に基づく触覚センサから得られた画像インプリントに基づいてエラストマーのメッシュを合成する学習に焦点を当てた。
グラフニューラルネットワーク(GNN)を導入し、教師付き学習で画像とメシュのマッピングを学習する。
論文 参考訳(メタデータ) (2022-03-29T00:24:10Z) - Towards Predicting Fine Finger Motions from Ultrasound Images via
Kinematic Representation [12.49914980193329]
米国の画像から特定指のアクティベーションを識別する推論問題について検討した。
本研究は,ロボット補綴器のアームアンプへの採用率向上に向けた重要なステップであると考えている。
論文 参考訳(メタデータ) (2022-02-10T18:05:09Z) - Dynamic Modeling of Hand-Object Interactions via Tactile Sensing [133.52375730875696]
本研究では,高分解能な触覚グローブを用いて,多種多様な物体に対して4種類のインタラクティブな動作を行う。
我々は,クロスモーダル学習フレームワーク上にモデルを構築し,視覚処理パイプラインを用いてラベルを生成し,触覚モデルを監督する。
この研究は、高密度触覚センシングによる手動物体相互作用における動的モデリングの一歩を踏み出す。
論文 参考訳(メタデータ) (2021-09-09T16:04:14Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
触覚シミュレーションのための粒子の弾性相互作用(EIP)を提案する。
EIPは、触覚センサを協調粒子群としてモデル化し、接触時の粒子の変形を制御するために弾性特性を適用した。
さらに,触覚データと視覚画像間の情報融合を可能にする触覚知覚ネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-11T03:49:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。