論文の概要: Systematically Deconstructing APVD Steganography and its Payload with a Unified Deep Learning Paradigm
- arxiv url: http://arxiv.org/abs/2511.16604v1
- Date: Thu, 20 Nov 2025 18:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-21 17:08:52.779907
- Title: Systematically Deconstructing APVD Steganography and its Payload with a Unified Deep Learning Paradigm
- Title(参考訳): 統合ディープラーニングパラダイムによるAPVDステガノグラフィの体系的分解とその負荷
- Authors: Kabbo Jit Deb, Md. Azizul Hakim, Md Shamse Tabrej,
- Abstract要約: Adaptive Pixel Value Difference (APVD) は、高い埋め込み能力と可視性で評価されるステガノグラフィー手法である。
本稿では,APVDステガノグラフィーを検出し,逆ステガナリシスを行うための深層学習に基づくアプローチを提案する。
本稿では,注意機構と2つの出力ヘッドを備えた畳み込みニューラルネットワーク(CNN)を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of digital communication, steganography allows covert embedding of data within media files. Adaptive Pixel Value Differencing (APVD) is a steganographic method valued for its high embedding capacity and invisibility, posing challenges for traditional steganalysis. This paper proposes a deep learning-based approach for detecting APVD steganography and performing reverse steganalysis, which reconstructs the hidden payload. We present a Convolutional Neural Network (CNN) with an attention mechanism and two output heads for simultaneous stego detection and payload recovery. Trained and validated on 10,000 images from the BOSSbase and UCID datasets, our model achieves a detection accuracy of 96.2 percent. It also reconstructs embedded payloads with up to 93.6 percent recovery at lower embedding densities. Results indicate a strong inverse relationship between payload size and recovery accuracy. This study reveals a vulnerability in adaptive steganography and provides a tool for digital forensic analysis, while encouraging reassessment of data security in the age of AI-driven techniques.
- Abstract(参考訳): デジタル通信の時代、ステガノグラフィーはメディアファイルにデータを隠蔽することを可能にする。
Adaptive Pixel Value Difference (APVD) は、埋め込み能力と可視性が高いことから評価されるステガノグラフィー手法であり、従来のステガナリシスの課題を提起している。
本稿では,APVDステガノグラフィーの検出と逆ステガナリシスを行うための深層学習に基づく手法を提案する。
本稿では,注意機構と2つの出力ヘッドを備えた畳み込みニューラルネットワーク(CNN)を提案する。
BOSSbaseとUCIDデータセットから1万のイメージをトレーニングし、検証し、我々のモデルは96.2%の精度で検出する。
また、埋め込み密度が低い場合に最大93.6%の回収率で組込みペイロードを再構築した。
その結果,ペイロードサイズと回収精度との間には強い逆相関関係が認められた。
本研究は、適応型ステガノグラフィーの脆弱性を明らかにし、AI駆動技術時代のデータセキュリティの再評価を奨励しつつ、デジタル法科学分析のためのツールを提供する。
関連論文リスト
- An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling [9.108675519106319]
脊椎圧迫骨折(VCFs)は骨粗しょう症の一般的な原因であり、潜在的に重篤な結果である。
機会論的診断のような高度なシナリオでは、モデル解釈可能性がAIレコメンデーションの採用の鍵となる。
我々はCTボリュームにおけるVCF検出のためのニューロシンボリックアプローチを導入する。
論文 参考訳(メタデータ) (2024-12-23T04:01:44Z) - A Novel Approach to Image Steganography Using Generative Adversarial Networks [0.0]
本稿では,GAN(Generative Adversarial Network)のパワーを活用した画像ステガノグラフィー手法を提案する。
慎重に設計されたGANアーキテクチャを用いることで,本手法は,従来のものと視覚的に区別できないステゴイメージの作成を確実にする。
その結果,Pak Signal-to-Noise Ratio (PSNR), Structure similarity Index Measure (SSIM),そして検出に対する堅牢性などの指標が大幅に改善された。
論文 参考訳(メタデータ) (2024-11-27T14:34:41Z) - Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning [0.5999777817331317]
本研究はPRISMA分析を用いた系統的な文献レビューを行い,62項目について検討した。
DR病変の検出に使用される多種多様なディープラーニング技術について論じる。
論文 参考訳(メタデータ) (2024-09-25T08:13:39Z) - Natias: Neuron Attribution based Transferable Image Adversarial Steganography [62.906821876314275]
逆行性ステガナグラフィーは、ディープラーニングに基づくステガナリシスを効果的に欺く能力から、かなりの注目を集めている。
そこで我々は,Natias という新たな逆向きステガノグラフィー手法を提案する。
提案手法は既存の逆向きステガノグラフィーフレームワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2024-09-08T04:09:51Z) - Deep Learning for Network Anomaly Detection under Data Contamination: Evaluating Robustness and Mitigating Performance Degradation [0.0]
ディープラーニング(DL)は、サイバーセキュリティのためのネットワーク異常検出(NAD)において重要なツールとして登場した。
異常検出のためのDLモデルはデータから特徴や学習パターンを抽出するのに優れているが、データ汚染には弱い。
本研究では,データ汚染に対する6つの教師なしDLアルゴリズムのロバスト性を評価する。
論文 参考訳(メタデータ) (2024-07-11T19:47:37Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
画像データに対するエラーカーネル駆動型アクティベーションアライメントアルゴリズムを提案する。
EKDAAは、ローカルに派生したエラー送信カーネルとエラーマップを導入することで達成される。
結果は、識別不能なアクティベーション機能を利用するEKDAAトレーニングCNNに対して提示される。
論文 参考訳(メタデータ) (2022-06-03T21:14:10Z) - Data augmentation for deep learning based accelerated MRI reconstruction
with limited data [46.44703053411933]
ディープニューラルネットワークは、画像復元と再構成タスクの非常に成功したツールとして登場した。
最先端のパフォーマンスを達成するためには、大規模で多様な画像集合の訓練が重要であると考えられる。
本稿では,MRI画像再構成の高速化のためのデータ拡張のためのパイプラインを提案し,必要なトレーニングデータを削減する上での有効性について検討する。
論文 参考訳(メタデータ) (2021-06-28T19:08:46Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。