論文の概要: Reduced-Basis Deep Operator Learning for Parametric PDEs with Independently Varying Boundary and Source Data
- arxiv url: http://arxiv.org/abs/2511.18260v1
- Date: Sun, 23 Nov 2025 03:22:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.728214
- Title: Reduced-Basis Deep Operator Learning for Parametric PDEs with Independently Varying Boundary and Source Data
- Title(参考訳): 独立変数境界データとソースデータを用いたパラメトリックPDEの低ベイシス深部演算子学習
- Authors: Yueqi Wang, Guang Lin,
- Abstract要約: RB-DeepONetは,DeepONetの分岐トランク構造と低基底数値構造を融合したハイブリッド演算子学習フレームワークである。
トランクはグレディ選択によってオフラインで生成された厳密に構築されたRB空間に固定され、物理的解釈可能性、安定性、認証されたエラー制御が許される。
独立に負荷や境界条件が変化する問題に対して、低次元座標にデータを圧縮する境界およびソースモーダル符号化を開発する。
- 参考スコア(独自算出の注目度): 9.387051908915078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric PDEs power modern simulation, design, and digital-twin systems, yet their many-query workloads still hinge on repeatedly solving large finite-element systems. Existing operator-learning approaches accelerate this process but often rely on opaque learned trunks, require extensive labeled data, or break down when boundary and source data vary independently from physical parameters. We introduce RB-DeepONet, a hybrid operator-learning framework that fuses reduced-basis (RB) numerical structure with the branch-trunk architecture of DeepONet. The trunk is fixed to a rigorously constructed RB space generated offline via Greedy selection, granting physical interpretability, stability, and certified error control. The branch network predicts only RB coefficients and is trained label-free using a projected variational residual that targets the RB-Galerkin solution. For problems with independently varying loads or boundary conditions, we develop boundary and source modal encodings that compress exogenous data into low-dimensional coordinates while preserving accuracy. Combined with affine or empirical interpolation decompositions, RB-DeepONet achieves a strict offline-online split: all heavy lifting occurs offline, and online evaluation scales only with the RB dimension rather than the full mesh. We provide convergence guarantees separating RB approximation error from statistical learning error, and numerical experiments show that RB-DeepONet attains accuracy competitive with intrusive RB-Galerkin, POD-DeepONet, and FEONet while using dramatically fewer trainable parameters and achieving significant speedups. This establishes RB-DeepONet as an efficient, stable, and interpretable operator learner for large-scale parametric PDEs.
- Abstract(参考訳): パラメトリックPDEは、現代のシミュレーション、設計、デジタルツインシステムに電力を供給しているが、多くのクエリのワークロードは、大きな有限要素システムの繰り返しを解決している。
既存の演算子学習アプローチはこのプロセスを加速するが、しばしば不透明な学習トランクに依存し、広範なラベル付きデータを必要とする。
RB-DeepONetは,DeepONetの分岐トランクアーキテクチャとリダクション基底(RB)数値構造を融合したハイブリッド演算子学習フレームワークである。
トランクはグレディ選択によってオフラインで生成された厳密に構築されたRB空間に固定され、物理的解釈可能性、安定性、認証されたエラー制御が許される。
分岐ネットワークはRB係数のみを予測し、RB-ガレルキン溶液をターゲットとした予測された変分残差を用いてラベルフリーで訓練される。
独立に負荷や境界条件が変化する問題に対して、精度を保ちながら外因性データを低次元座標に圧縮する境界およびソースモーダル符号化を開発する。
アフィンや経験的補間分解と組み合わせて、RB-DeepONetは厳密なオフライン-オフライン分割を実現している。
数値実験により,RB-DeepONetは, RB-Galerkin, POD-DeepONet, FEONetと競合し, トレーニング可能なパラメータを劇的に減らし, 大幅な高速化を実現した。
これによりRB-DeepONetは大規模パラメトリックPDEのための効率的で安定的で解釈可能な演算子学習者となる。
関連論文リスト
- Feedback Alignment Meets Low-Rank Manifolds: A Structured Recipe for Local Learning [7.034739490820967]
バックプロパゲーション(BP)を用いたディープニューラルネットワーク(DNN)のトレーニングは、最先端の精度を実現するが、大域的なエラー伝搬と完全なパラメータ化が必要である。
ダイレクトフィードバックアライメント(DFA)は、メモリ要件の低いローカルで並列化可能な更新を可能にする。
低ランク多様体上で直接動作する構造化局所学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-29T15:03:46Z) - APRIL: Auxiliary Physically-Redundant Information in Loss - A physics-informed framework for parameter estimation with a gravitational-wave case study [0.0]
物理情報ニューラルネットワーク(PINN)は、ニューラルネットワークのトレーニングに直接、システムを管理する偏微分方程式を組み込む。
本稿では,損失に物理的に依存する補助的な情報を含めることによる補完的アプローチを提案する。
数学的にこれらの用語は、損失景観を再構成しながら、真の物理的最小値を保存することを実証する。
論文 参考訳(メタデータ) (2025-10-15T15:34:19Z) - Regularizing Subspace Redundancy of Low-Rank Adaptation [54.473090597164834]
本稿では、マッピング部分空間間の冗長性を明示的にモデル化し、低ランク適応のサブスペース冗長性を適応的に正規化する手法であるReSoRAを提案する。
提案手法は、視覚言語検索や標準的な視覚分類ベンチマークにおいて、様々なバックボーンやデータセットにまたがる既存のPETL手法を一貫して促進する。
トレーニングの監督として、ReSoRAは追加の推論コストなしで、プラグイン・アンド・プレイ方式で既存のアプローチにシームレスに統合することができる。
論文 参考訳(メタデータ) (2025-07-28T11:52:56Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
本稿では,レイヤワイドパラメータのオーバーライトや決定境界の歪みに起因する,概念的にシンプルで効果的な手法を提案する。
提案手法は,ゼロの指数バッファと1.02倍の差が絶対的に優れていても,競争精度が向上する。
論文 参考訳(メタデータ) (2024-01-17T09:01:29Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
ディープラーニングアルゴリズムは、PDEの高速解を得るための有効な代替手段として登場した。
モデルは通常、ソルバによって生成された合成データに基づいてトレーニングされ、ディスクに格納され、トレーニングのために読み返される。
ディープサロゲートモデルのためのオープンソースのオンライントレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-28T12:02:27Z) - Lightweight and Flexible Deep Equilibrium Learning for CSI Feedback in
FDD Massive MIMO [13.856867175477042]
広帯域多重出力(MIMO)システムでは、ダウンリンクチャネル状態情報(CSI)をベースステーション(BS)に送信する必要がある。
本稿では,深層平衡モデルを用いた軽量で柔軟な深層学習に基づくCSIフィードバック手法を提案する。
論文 参考訳(メタデータ) (2022-11-28T05:53:09Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z) - Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks [1.2891210250935143]
広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
論文 参考訳(メタデータ) (2020-11-24T21:48:43Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
強い表現力を持つ深部畳み込みニューラルネットワーク(CNN)は、単一画像超解像(SISR)において印象的な性能を達成した
情報抽出・拡張ブロック(IEEB)、再構築ブロック(RB)、情報精製ブロック(IRB)の3つの連続したサブブロックを持つ軽量拡張SR CNN(LESRCNN)を提案する。
IEEBは階層的低分解能(LR)特徴を抽出し、SISRの深い層上の浅い層の記憶能力を高めるために、得られた特徴を段階的に集約する。
RBはグローバルに拡散することで低周波特徴を高周波特徴に変換する
論文 参考訳(メタデータ) (2020-07-08T18:03:40Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。