論文の概要: Classification EM-PCA for clustering and embedding
- arxiv url: http://arxiv.org/abs/2511.18992v1
- Date: Mon, 24 Nov 2025 11:18:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:25.173726
- Title: Classification EM-PCA for clustering and embedding
- Title(参考訳): クラスタリングと埋め込みのためのEM-PCA分類
- Authors: Zineddine Tighidet, Lazhar Labiod, Mohamed Nadif,
- Abstract要約: 混合モデルは、間違いなくクラスタリングに対する最大の貢献の1つです。
expectation-Maximization (EM)アルゴリズムは、クラスタリングが推測されるパラメータを推定するのに特に適している。
分類版である分類EM(CEM)アルゴリズムは、高速収束ソリューションを提供する。
- 参考スコア(独自算出の注目度): 13.713107020091726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The mixture model is undoubtedly one of the greatest contributions to clustering. For continuous data, Gaussian models are often used and the Expectation-Maximization (EM) algorithm is particularly suitable for estimating parameters from which clustering is inferred. If these models are particularly popular in various domains including image clustering, they however suffer from the dimensionality and also from the slowness of convergence of the EM algorithm. However, the Classification EM (CEM) algorithm, a classifying version, offers a fast convergence solution while dimensionality reduction still remains a challenge. Thus we propose in this paper an algorithm combining simultaneously and non-sequentially the two tasks --Data embedding and Clustering-- relying on Principal Component Analysis (PCA) and CEM. We demonstrate the interest of such approach in terms of clustering and data embedding. We also establish different connections with other clustering approaches.
- Abstract(参考訳): 混合モデルは、間違いなくクラスタリングに対する最大の貢献の1つです。
連続データにはガウスモデルがよく使われ、予測最大化(EM)アルゴリズムは特にクラスタリングが推測されるパラメータを推定するのに適している。
これらのモデルが画像クラスタリングを含む様々な領域で特に人気がある場合、次元性やEMアルゴリズムの収束の遅さに悩まされる。
しかし、分類版である分類EM(CEM)アルゴリズムは高速収束解を提供するが、次元の減少は依然として課題である。
そこで本論文では,主成分分析(PCA)とCEMに基づくデータ埋め込みとクラスタリングという2つのタスクを同時かつ非逐次的に組み合わせたアルゴリズムを提案する。
クラスタリングとデータ埋め込みの観点から、そのようなアプローチの関心を実証する。
他のクラスタリングアプローチとの異なる接続も確立しています。
関連論文リスト
- Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
ファジィK平均クラスタリングは教師なしデータ分析において重要な手法である。
本稿では,クラスタセントロイドへの依存を完全に排除する,ファジィテクストK-Meansクラスタリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-07T12:25:03Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [85.51611950757643]
IAC (Instance-Adaptive Clustering, インスタンス適応クラスタリング) を提案する。
IACは$ MathcalO(n, textpolylog(n) $の計算複雑性を維持しており、大規模問題に対してスケーラブルで実用的なものである。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-平均アルゴリズムの変種は、本質的に同じ球面ガウスの混合と、そのような分布から大きく逸脱するデータに適合する。
一般のGMMに対してより効率的な最適化アルゴリズムを開発し、これらのアルゴリズムと正規化戦略を組み合わせ、過度な適合を避ける。
これらの結果から, GMM と k-means 法の間の現状に新たな光を当て, 一般 GMM をデータ探索に利用することが示唆された。
論文 参考訳(メタデータ) (2023-02-05T18:22:29Z) - A Non-Parametric Bootstrap for Spectral Clustering [0.7673339435080445]
我々は,データ行列のスペクトル分解と非パラメトリックブートストラップサンプリング方式を組み合わせた2つの新しいアルゴリズムを開発した。
我々の手法は、有限混合モデルに適合する他のブートストラップアルゴリズムと比較して収束性においてより一貫性がある。
論文 参考訳(メタデータ) (2022-09-13T08:37:05Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
本稿では,クラスタメンバシップ行列の総変動(TV)正規化手順に基づく作業クラスタリングモデルを紹介する。
マトリックス支援レーザー脱離イオン化イメージング測定から得られた超スペクトルデータセット上の提案手法をすべて数値的に評価する。
論文 参考訳(メタデータ) (2021-04-25T23:40:41Z) - Optimal Clustering in Anisotropic Gaussian Mixture Models [3.5590836605011047]
異方性ガウス混合モデルに基づくクラスタリング作業について検討する。
クラスタ中心における信号対雑音比の依存性を特徴づける。
論文 参考訳(メタデータ) (2021-01-14T00:31:52Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。