論文の概要: Normative active inference: A numerical proof of principle for a computational and economic legal analytic approach to AI governance
- arxiv url: http://arxiv.org/abs/2511.19334v1
- Date: Mon, 24 Nov 2025 17:30:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:25.342948
- Title: Normative active inference: A numerical proof of principle for a computational and economic legal analytic approach to AI governance
- Title(参考訳): 規範的アクティブ推論:AIガバナンスに対する計算的および経済的法的分析アプローチの原理の数値的証明
- Authors: Axel Constant, Mahault Albarracin, Karl J. Friston,
- Abstract要約: 本稿では,AIエージェントの行動に法的規範がどう影響するかを計算学的に考察する。
我々は,エージェントに意図的な制御システムを与える設計による規制によって,合法的で規範に敏感なAI行動が達成可能であることを提案する。
我々は、文脈依存の嗜好が自律エージェントの安全メカニズムとしてどのように機能するかを議論することで結論付けた。
- 参考スコア(独自算出の注目度): 0.6267988254367711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a computational account of how legal norms can influence the behavior of artificial intelligence (AI) agents, grounded in the active inference framework (AIF) that is informed by principles of economic legal analysis (ELA). The ensuing model aims to capture the complexity of human decision-making under legal constraints, offering a candidate mechanism for agent governance in AI systems, that is, the (auto)regulation of AI agents themselves rather than human actors in the AI industry. We propose that lawful and norm-sensitive AI behavior can be achieved through regulation by design, where agents are endowed with intentional control systems, or behavioral safety valves, that guide real-time decisions in accordance with normative expectations. To illustrate this, we simulate an autonomous driving scenario in which an AI agent must decide when to yield the right of way by balancing competing legal and pragmatic imperatives. The model formalizes how AIF can implement context-dependent preferences to resolve such conflicts, linking this mechanism to the conception of law as a scaffold for rational decision-making under uncertainty. We conclude by discussing how context-dependent preferences could function as safety mechanisms for autonomous agents, enhancing lawful alignment and risk mitigation in AI governance.
- Abstract(参考訳): 本稿では,経済法解析(ELA)の原理を基礎とした,AIF(Active Inference framework)に基づくAIエージェントの行動に法的規範がどのような影響を及ぼすかの計算学的考察を行う。
続くモデルは、法的制約の下で人間の意思決定の複雑さを捉えることを目的としており、AIシステムにおけるエージェントガバナンスの候補メカニズムを提供する。
我々は,エージェントに意図的な制御システム,あるいは行動安全弁を付与し,規範的期待に応じてリアルタイムな判断を導出する設計による規制によって,合法的で規範に敏感なAI行動が達成可能であることを提案する。
これを説明するために、我々は、AIエージェントが競合する法的な命令と実用的な命令のバランスをとることによって、いつその権利を得るかを判断しなければならない自律運転シナリオをシミュレートする。
このモデルは、AIFがこのような紛争を解決するために文脈依存の嗜好をどのように実装できるかを定式化し、このメカニズムを不確実性の下で合理的な意思決定のための足場として法の概念にリンクする。
我々は、文脈依存の嗜好が自律エージェントの安全メカニズムとして機能し、AIガバナンスにおける合法的なアライメントとリスク軽減を強化する方法について論じる。
関連論文リスト
- Development of management systems using artificial intelligence systems and machine learning methods for boards of directors (preprint, unofficial translation) [0.0]
この研究は、AIが意思決定支援ツールから自律的な意思決定者へと移行する、企業管理のパラダイムシフトに対処する。
主要な問題は、AI技術の開発が適切な法的および倫理的ガイドラインの作成をはるかに上回っていることである。
本研究は、企業経営における自律型AIシステムの開発と実装のための「参照モデル」を提案する。
論文 参考訳(メタデータ) (2025-08-05T04:01:22Z) - Foundations for Risk Assessment of AI in Protecting Fundamental Rights [0.5093073566064981]
この章では、AIの質的リスクアセスメントの概念的フレームワークを紹介します。
法的コンプライアンスと基本的権利保護の複雑さに対処し、定義的バランスとデファシブルな推論を反復する。
論文 参考訳(メタデータ) (2025-07-24T10:52:22Z) - Resource Rational Contractualism Should Guide AI Alignment [69.07915246220985]
契約主義的アライメントは、多様な利害関係者が支持する合意の中で決定を下すことを提案する。
我々は、AIシステムが合理的な当事者が形成する合意を近似する枠組みであるリソース・リアリズムを提案する。
RRC対応エージェントは、効率的に機能するだけでなく、変化する人間の社会世界への適応と解釈を動的に行うことができる。
論文 参考訳(メタデータ) (2025-06-20T18:57:13Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
本稿では,信頼できるAIシステムを育成する上での,AI開発者,規制当局,ユーザ,メディア間の相互作用について検討する。
進化的ゲーム理論と大言語モデル(LLM)を用いて、異なる規制体制下でこれらのアクター間の戦略的相互作用をモデル化する。
論文 参考訳(メタデータ) (2025-03-12T21:39:38Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
エージェント人工知能(AI)は、自律的に長期的な目標を追求し、意思決定を行い、複雑なマルチターンを実行することができる。
この指導的役割から積極的執行課題への移行は、法的、経済的、創造的な枠組みを確立した。
我々は,創造性と知的財産,法的・倫理的考察,競争効果の3つの分野における課題を探求する。
論文 参考訳(メタデータ) (2025-02-01T03:14:59Z) - Decentralized Governance of Autonomous AI Agents [0.0]
ETHOSは、ブロックチェーン、スマートコントラクト、分散自律組織(DAO)など、Web3テクノロジを活用する分散ガバナンス(DeGov)モデルである。
AIエージェントのグローバルレジストリを確立し、動的リスク分類、比例監視、自動コンプライアンス監視を可能にする。
合理性、倫理的根拠、ゴールアライメントの哲学的原則を統合することで、ETHOSは信頼、透明性、参加的ガバナンスを促進するための堅牢な研究アジェンダを作ることを目指している。
論文 参考訳(メタデータ) (2024-12-22T18:01:49Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Generative AI Needs Adaptive Governance [0.0]
ジェネレーティブAIは、ガバナンス、信頼、ヒューマンエージェンシーの概念に挑戦する。
本稿では,ジェネレーティブAIが適応的ガバナンスを求めていることを論じる。
我々は、アクター、ロール、および共有およびアクター固有のポリシー活動の概要を概説する。
論文 参考訳(メタデータ) (2024-06-06T23:47:14Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。