論文の概要: InferF: Declarative Factorization of AI/ML Inferences over Joins
- arxiv url: http://arxiv.org/abs/2511.20489v1
- Date: Tue, 25 Nov 2025 16:55:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-26 17:37:04.558066
- Title: InferF: Declarative Factorization of AI/ML Inferences over Joins
- Title(参考訳): InferF: AI/ML推論のジョイントに対する宣言的要因化
- Authors: Kanchan Chowdhury, Lixi Zhou, Lulu Xie, Xinwei Fu, Jia Zou,
- Abstract要約: 機械学習がマルチウェイ結合よりもAI/ML推論にどう影響するかを示す。
我々は,MetaのオープンソースデータベースエンジンであるVelox上でInferFを実装し,実世界のデータセットで評価する。
- 参考スコア(独自算出の注目度): 2.4140502941897544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world AI/ML workflows often apply inference computations to feature vectors joined from multiple datasets. To avoid the redundant AI/ML computations caused by repeated data records in the join's output, factorized ML has been proposed to decompose ML computations into sub-computations to be executed on each normalized dataset. However, there is insufficient discussion on how factorized ML could impact AI/ML inference over multi-way joins. To address the limitations, we propose a novel declarative InferF system, focusing on the factorization of arbitrary inference workflows represented as analyzable expressions over the multi-way joins. We formalize our problem to flexibly push down partial factorized computations to qualified nodes in the join tree to minimize the overall inference computation and join costs and propose two algorithms to resolve the problem: (1) a greedy algorithm based on a per-node cost function that estimates the influence on overall latency if a subset of factorized computations is pushed to a node, and (2) a genetic algorithm for iteratively enumerating and evaluating promising factorization plans. We implement InferF on Velox, an open-sourced database engine from Meta, evaluate it on real-world datasets, observed up to 11.3x speedups, and systematically summarized the factors that determine when factorized ML can benefit AI/ML inference workflows.
- Abstract(参考訳): 現実のAI/MLワークフローは、複数のデータセットから結合された特徴ベクトルに推論計算を適用することが多い。
ジョインの出力における繰り返しデータレコードによる冗長なAI/ML計算を回避するため、因子化MLは、ML計算を正規化されたデータセットで実行されるサブ計算に分解する提案がなされている。
しかし、因子化されたMLがマルチウェイ結合よりもAI/ML推論にどのような影響を及ぼすかについての議論は不十分である。
この制約に対処するために,多方向結合上の解析可能な式として表される任意の推論ワークフローの分解に着目した,新しい宣言型InferFシステムを提案する。
そこで我々は,各ノードごとのコスト関数に基づくグレディアルゴリズムを提案し,各ノードに因数分解計算のサブセットをプッシュした場合に,全体のレイテンシへの影響を推定する。(2) 因数分解計画の反復的列挙と評価を行う遺伝的アルゴリズムである。
われわれはMetaのオープンソースデータベースエンジンであるInferF on Veloxを実装し、それを現実世界のデータセットで評価し、最大11.3倍のスピードアップを観察し、機械学習がAI/ML推論ワークフローの恩恵を受けるかどうかを決定する要因を体系的に要約した。
関連論文リスト
- Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling [90.86991492288487]
トークンの制約を評価するのは 違法にコストがかかる
LCDは文字列上のグローバル分布を歪め、ローカル情報のみに基づいてトークンをサンプリングすることができる。
我々のアプローチは最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2025-04-07T18:30:18Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Tender: Accelerating Large Language Models via Tensor Decomposition and Runtime Requantization [0.6445087473595953]
大規模言語モデル(LLM)は、機械学習における様々なタスクにおいて優れたパフォーマンスを示す。
LLM推論のデプロイは、高い計算とメモリ要求のために問題となる。
我々は,低精度でLLM推論を効率的に展開できるアルゴリズム-ハードウェア共設計ソリューションであるテンダーを提案する。
論文 参考訳(メタデータ) (2024-06-16T09:51:55Z) - Adaptive neighborhood Metric learning [184.95321334661898]
適応的近傍距離距離学習(ANML)という新しい距離距離距離距離距離距離学習アルゴリズムを提案する。
ANMLは線形埋め込みと深層埋め込みの両方を学ぶのに使うことができる。
本手法で提案するemphlog-exp平均関数は,深層学習手法をレビューするための新たな視点を与える。
論文 参考訳(メタデータ) (2022-01-20T17:26:37Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Federated Expectation Maximization with heterogeneity mitigation and
variance reduction [0.0]
本稿では、潜在変数モデルに対する期待最大化(EM)アルゴリズムの最初の拡張であるFedEMを紹介する。
通信の複雑さを軽減するため、FedEMは十分なデータ統計を適切に定義した。
その結果,生物多様性モニタリングに欠落した値の計算処理を応用した理論的知見が得られた。
論文 参考訳(メタデータ) (2021-11-03T09:14:34Z) - CausalX: Causal Explanations and Block Multilinear Factor Analysis [3.087360758008569]
全体と部分の統一多線形モデルを提案する。
ボトムアップ計算の代替品であるインクリメンタルmモードブロックsvdを導入する。
結果のオブジェクト表現は、オブジェクトの全体と部分の階層に関連する固有の因果係数表現の解釈可能な選択である。
論文 参考訳(メタデータ) (2021-02-25T13:49:01Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - Federated Matrix Factorization: Algorithm Design and Application to Data
Clustering [18.917444528804463]
データプライバシに関する近年の要求は、大規模で異種ネットワークにおける新たな分散学習パラダイムとして、フェデレートラーニング(FL)を提唱している。
我々は,モデル平均化と勾配共有原理に基づく2つの新しいFedMFアルゴリズム,すなわちFedMAvgとFedMGSを提案する。
論文 参考訳(メタデータ) (2020-02-12T11:48:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。