論文の概要: Nonconvex Penalized LAD Estimation in Partial Linear Models with DNNs: Asymptotic Analysis and Proximal Algorithms
- arxiv url: http://arxiv.org/abs/2511.21115v1
- Date: Wed, 26 Nov 2025 07:01:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.001902
- Title: Nonconvex Penalized LAD Estimation in Partial Linear Models with DNNs: Asymptotic Analysis and Proximal Algorithms
- Title(参考訳): DNNを用いた部分線形モデルにおける非凸ペナル化LAD推定:漸近解析と近似アルゴリズム
- Authors: Lechen Feng, Haoran Li, Lucky Li, Xingqiu Zhao,
- Abstract要約: 本稿では,LAST Absolute Deviation (LAD) による線形部分モデルについて検討する。
我々は、ディープニューラルネットワーク(NN)とペナライズされたLADモデルを用いて、非下位パラメータを定式化する。
- 参考スコア(独自算出の注目度): 3.8450418136547224
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper investigates the partial linear model by Least Absolute Deviation (LAD) regression. We parameterize the nonparametric term using Deep Neural Networks (DNNs) and formulate a penalized LAD problem for estimation. Specifically, our model exhibits the following challenges. First, the regularization term can be nonconvex and nonsmooth, necessitating the introduction of infinite dimensional variational analysis and nonsmooth analysis into the asymptotic normality discussion. Second, our network must expand (in width, sparsity level and depth) as more samples are observed, thereby introducing additional difficulties for theoretical analysis. Third, the oracle of the proposed estimator is itself defined through a ultra high-dimensional, nonconvex, and discontinuous optimization problem, which already entails substantial computational and theoretical challenges. Under such the challenges, we establish the consistency, convergence rate, and asymptotic normality of the estimator. Furthermore, we analyze the oracle problem itself and its continuous relaxation. We study the convergence of a proximal subgradient method for both formulations, highlighting their structural differences lead to distinct computational subproblems along the iterations. In particular, the relaxed formulation admits significantly cheaper proximal updates, reflecting an inherent trade-off between statistical accuracy and computational tractability.
- Abstract(参考訳): 本稿では,LAST Absolute Deviation (LAD)回帰による部分線形モデルについて検討する。
我々は、Deep Neural Networks (DNN) を用いて非パラメトリック項をパラメータ化し、推定のためにペナル化LAD問題を定式化する。
具体的には,以下の課題を示す。
まず、正規化項は非凸かつ非平滑であり、漸近的正規性議論に無限次元の変動解析と非平滑解析を導入する必要がある。
第二に、我々のネットワークはより多くのサンプルが観測されるにつれて(幅、空間レベル、深さにおいて)拡張され、理論的解析にさらなる困難がもたらされる。
第三に、提案した推定器のオラクルは、それ自体が超高次元、非凸、不連続な最適化問題によって定義されている。
このような課題の下で、推定器の一貫性、収束率、漸近正規性を確立する。
さらに、オラクル問題自体とその継続的な緩和について分析する。
両定式化のための近位下次法の収束性について検討し、それらの構造的差異が繰り返しに沿って異なる計算サブプロブレムに繋がることを示した。
特に、緩和された定式化は、統計的精度と計算的トラクタビリティの間の本質的にのトレードオフを反映して、かなり安価な近位更新を許容する。
関連論文リスト
- Revisiting Zeroth-Order Optimization: Minimum-Variance Two-Point Estimators and Directionally Aligned Perturbations [57.179679246370114]
乱摂動の分布は, 摂動段差がゼロになる傾向にあるため, 推定子の分散を最小限に抑える。
以上の結果から, 一定の長さを維持するのではなく, 真の勾配に方向を合わせることが可能であることが示唆された。
論文 参考訳(メタデータ) (2025-10-22T19:06:39Z) - Asymptotics of Non-Convex Generalized Linear Models in High-Dimensions: A proof of the replica formula [17.036996839737828]
非次元ガウス正規化モデルの最適性を証明するために,アルゴリズムをどのように利用できるかを示す。
また, 負の正則化モデルの最適性を証明するために, テューキー損失を用いる方法を示す。
論文 参考訳(メタデータ) (2025-02-27T11:29:43Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - A Statistical Theory of Regularization-Based Continual Learning [10.899175512941053]
線形回帰タスクの順序に基づく正規化に基づく連続学習の統計的解析を行う。
まず、全てのデータが同時に利用可能であるかのように得られたオラクル推定器の収束率を導出する。
理論解析の副産物は、早期停止と一般化された$ell$-regularizationの等価性である。
論文 参考訳(メタデータ) (2024-06-10T12:25:13Z) - Error Bounds of Supervised Classification from Information-Theoretic Perspective [0.0]
我々は、情報理論の観点から、教師付き分類にディープニューラルネットワークを使用する場合の予測リスクのバウンダリについて検討する。
経験的リスクをさらに分解したモデルリスクとフィッティングエラーを導入する。
論文 参考訳(メタデータ) (2024-06-07T01:07:35Z) - Last-Iterate Convergence of Adaptive Riemannian Gradient Descent for Equilibrium Computation [52.73824786627612]
本稿では,テクスト幾何学的強単調ゲームに対する新たな収束結果を確立する。
我々のキーとなる結果は、RGDがテクスト幾何学的手法で最終定位線形収束を実現することを示しています。
全体として、ユークリッド設定を超えるゲームに対して、幾何学的に非依存な最終点収束解析を初めて提示する。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - An Optimal Statistical and Computational Framework for Generalized
Tensor Estimation [10.899518267165666]
本稿では,低ランクテンソル推定問題に対するフレキシブルなフレームワークについて述べる。
計算画像、ゲノミクス、ネットワーク解析の応用から多くの重要な例を含む。
論文 参考訳(メタデータ) (2020-02-26T01:54:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。