論文の概要: Differentiable Physics-Neural Models enable Learning of Non-Markovian Closures for Accelerated Coarse-Grained Physics Simulations
- arxiv url: http://arxiv.org/abs/2511.21369v1
- Date: Wed, 26 Nov 2025 13:13:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.106886
- Title: Differentiable Physics-Neural Models enable Learning of Non-Markovian Closures for Accelerated Coarse-Grained Physics Simulations
- Title(参考訳): 微分可能な物理-ニューラルモデルにより、加速された粗粒化物理学シミュレーションのための非マルコフ閉包の学習が可能となる
- Authors: Tingkai Xue, Chin Chun Ooi, Zhengwei Ge, Fong Yew Leong, Hongying Li, Chang Wei Kang,
- Abstract要約: 本研究は3次元シミュレーションよりも高速に複雑な領域のスカラー輸送を予測するハイブリッド物理-神経モデルを提案する。
全体として、この微分可能な物理-神経の枠組みは、物理現象の高速で、正確で、一般化可能な粗粒状サロゲートを可能にすることが示されている。
- 参考スコア(独自算出の注目度): 0.11874952582465602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical simulations provide key insights into many physical, real-world problems. However, while these simulations are solved on a full 3D domain, most analysis only require a reduced set of metrics (e.g. plane-level concentrations). This work presents a hybrid physics-neural model that predicts scalar transport in a complex domain orders of magnitude faster than the 3D simulation (from hours to less than 1 min). This end-to-end differentiable framework jointly learns the physical model parameterization (i.e. orthotropic diffusivity) and a non-Markovian neural closure model to capture unresolved, 'coarse-grained' effects, thereby enabling stable, long time horizon rollouts. This proposed model is data-efficient (learning with 26 training data), and can be flexibly extended to an out-of-distribution scenario (with a moving source), achieving a Spearman correlation coefficient of 0.96 at the final simulation time. Overall results show that this differentiable physics-neural framework enables fast, accurate, and generalizable coarse-grained surrogates for physical phenomena.
- Abstract(参考訳): 数値シミュレーションは多くの物理的、実世界の問題に対する重要な洞察を提供する。
しかし、これらのシミュレーションは完全な3次元領域で解かれるが、ほとんどの分析では測定基準(例えば平面レベルの濃度)を減らしているだけである。
この研究は、3次元シミュレーション(数時間から1分未満)よりもはるかに高速な複雑な領域におけるスカラー輸送を予測するハイブリッド物理-神経モデルを示す。
このエンドツーエンドの微分可能なフレームワークは、物理的モデルのパラメータ化(オルソトロピックな拡散率)と非マルコフ的ニューラルクロージャモデルとを共同で学習し、未解決の「粗い粒度の」効果を捕捉し、安定で長期間の水平ロールアウトを可能にする。
提案モデルは,データ効率(26のトレーニングデータを用いた学習)であり,最終的なシミュレーション時間で0.96のスピアマン相関係数を達成することができる。
全体として、この微分可能な物理-神経の枠組みは、物理現象の高速で、正確で、一般化可能な粗粒状サロゲートを可能にすることが示されている。
関連論文リスト
- Physics-constrained coupled neural differential equations for one dimensional blood flow modeling [0.3749861135832073]
計算心血管モデリングは、血流動態を理解する上で重要な役割を担っている。
有限要素法(FEM)に基づく従来の1次元モデルは、3次元平均解に比べて精度が低いことが多い。
本研究では1次元血流モデルの精度を向上させる物理制約付き機械学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-08T15:22:20Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Rethinking materials simulations: Blending direct numerical simulations
with neural operators [1.6874375111244329]
そこで本研究では,数値解法とニューラル演算子をブレンドしてシミュレーションを高速化する手法を開発した。
物理蒸着中の微細構造変化シミュレーションにおけるこの枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-12-08T23:44:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
物理制約付き深層学習モデルを構築し, 多相多孔質体における多相流の解法について検討した。
モデルは物理に基づくシミュレーションデータから訓練され、物理過程をエミュレートする。
このモデルは物理シミュレーションと比較して1400倍のスピードアップで予測を行う。
論文 参考訳(メタデータ) (2021-04-30T02:15:01Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。