論文の概要: Machine Learning Approaches to Clinical Risk Prediction: Multi-Scale Temporal Alignment in Electronic Health Records
- arxiv url: http://arxiv.org/abs/2511.21561v1
- Date: Wed, 26 Nov 2025 16:33:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.194818
- Title: Machine Learning Approaches to Clinical Risk Prediction: Multi-Scale Temporal Alignment in Electronic Health Records
- Title(参考訳): 臨床リスク予測への機械学習アプローチ:電子カルテにおける多段階的時間アライメント
- Authors: Wei-Chen Chang, Lu Dai, Ting Xu,
- Abstract要約: 本研究では,マルチスケール時間アライメントネットワーク(MSTAN)に基づくリスク予測手法を提案する。
電子健康記録(EHR)における時間的不規則性、サンプリング間隔差、およびマルチスケールダイナミック依存関係の課題に対処する。
EHRデータセットで実施された実験によると、提案されたモデルは、精度、リコール、精度、F1-Scoreのメインストリームベースラインを上回っている。
- 参考スコア(独自算出の注目度): 2.9576397177561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a risk prediction method based on a Multi-Scale Temporal Alignment Network (MSTAN) to address the challenges of temporal irregularity, sampling interval differences, and multi-scale dynamic dependencies in Electronic Health Records (EHR). The method focuses on temporal feature modeling by introducing a learnable temporal alignment mechanism and a multi-scale convolutional feature extraction structure to jointly model long-term trends and short-term fluctuations in EHR sequences. At the input level, the model maps multi-source clinical features into a unified high-dimensional semantic space and employs temporal embedding and alignment modules to dynamically weight irregularly sampled data, reducing the impact of temporal distribution differences on model performance. The multi-scale feature extraction module then captures key patterns across different temporal granularities through multi-layer convolution and hierarchical fusion, achieving a fine-grained representation of patient states. Finally, an attention-based aggregation mechanism integrates global temporal dependencies to generate individual-level risk representations for disease risk prediction and health status assessment. Experiments conducted on publicly available EHR datasets show that the proposed model outperforms mainstream baselines in accuracy, recall, precision, and F1-Score, demonstrating the effectiveness and robustness of multi-scale temporal alignment in complex medical time-series analysis. This study provides a new solution for intelligent representation of high-dimensional asynchronous medical sequences and offers important technical support for EHR-driven clinical risk prediction.
- Abstract(参考訳): 本研究では, 電子健康記録(EHR)における時間的不規則性, サンプリング間隔差, およびマルチスケールダイナミック依存関係の課題に対処するため, マルチスケール時間アライメントネットワーク(MSTAN)に基づくリスク予測手法を提案する。
学習可能な時間的アライメント機構と多スケールの畳み込み特徴抽出構造を導入し、EHRシーケンスの長期的傾向と短期的変動を共同でモデル化することで、時間的特徴モデリングに焦点を当てる。
入力レベルでは、マルチソースの臨床的特徴を統合された高次元意味空間にマッピングし、時間的埋め込みおよびアライメントモジュールを用いて、動的に不規則にサンプリングされたデータの重み付けを行い、時間的分布の違いがモデル性能に与える影響を低減する。
マルチスケールの特徴抽出モジュールは、多層畳み込みと階層融合によって異なる時間的粒度のキーパターンを捕捉し、患者の状態のきめ細かい表現を実現する。
最後に、注意に基づく集約機構は、グローバルな時間的依存関係を統合し、疾病リスク予測と健康状態評価のための個人レベルのリスク表現を生成する。
EHRデータセットを用いて行った実験により、提案モデルは、精度、リコール、精度、F1スコアにおいて主流のベースラインを上回り、複雑な医療時系列分析におけるマルチスケールの時間的アライメントの有効性とロバスト性を示す。
本研究は,高次元非同期医療シーケンスのインテリジェント表現のための新しいソリューションを提供し,EHRによる臨床リスク予測のための重要な技術支援を提供する。
関連論文リスト
- Deep Learning Approach for Clinical Risk Identification Using Transformer Modeling of Heterogeneous EHR Data [0.0]
本研究では,トランスフォーマーを用いた経時的モデリング手法を提案し,異種ERHデータを用いた臨床リスク分類の課題に対処する。
この方法はマルチソース医療機能を入力とし、構造化データと非構造化データの統一表現を実現するために特徴埋め込み層を用いる。
実験結果から,提案モデルは従来の機械学習モデルや時間的深層学習モデルよりも精度,リコール,精度,F1スコアで優れていた。
論文 参考訳(メタデータ) (2025-11-06T08:02:21Z) - Time-Aware Attention for Enhanced Electronic Health Records Modeling [8.4225455796455]
TALE-EHR は Transformer ベースのフレームワークで,連続的な時間的ギャップを明示的にモデル化する,新たなタイムアウェアアテンション機構を備えている。
本手法は, 疾患進展予測などのタスクにおいて, 最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2025-07-20T07:32:41Z) - CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [50.56875995511431]
マルチモーダルEHRデータから有意な時間的パターンを効率的に抽出するために,CTPD(Cross-Modal Temporal Pattern Discovery)フレームワークを導入する。
提案手法では,時間的セマンティックな埋め込みを生成するためにスロットアテンションを用いて改良された時間的パターン表現を提案する。
論文 参考訳(メタデータ) (2024-11-01T15:54:07Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - Static and multivariate-temporal attentive fusion transformer for readmission risk prediction [9.059101159859818]
ICU患者の短期的寛解を予測するため, SMTAFormer を新たに提案する。
提案手法の精度は最大86.6%であり,受信機動作特性曲線(AUC)の面積は最大0.717である。
論文 参考訳(メタデータ) (2024-07-15T03:42:44Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Temporal Cross-Attention for Dynamic Embedding and Tokenization of Multimodal Electronic Health Records [1.6609516435725236]
マルチモーダルな臨床時系列を正確に表現するための動的埋め込み・トークン化フレームワークを提案する。
術後合併症9例の発症予測に基礎的アプローチを応用した。
論文 参考訳(メタデータ) (2024-03-06T19:46:44Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。