論文の概要: On the Approximation of Phylogenetic Distance Functions by Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2512.02223v1
- Date: Mon, 01 Dec 2025 21:42:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.618395
- Title: On the Approximation of Phylogenetic Distance Functions by Artificial Neural Networks
- Title(参考訳): ニューラルネットワークによる系統的距離関数の近似について
- Authors: Benjamin K. Rosenzweig, Matthew W. Hahn,
- Abstract要約: この研究では、古典的な系統的距離関数を近似できる最小限のニューラルネットワークアーキテクチャを記述する。
学習した距離関数はよく一般化され、適切なトレーニングデータセットが与えられると、最先端の推論手法に匹敵する結果が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inferring the phylogenetic relationships among a sample of organisms is a fundamental problem in modern biology. While distance-based hierarchical clustering algorithms achieved early success on this task, these have been supplanted by Bayesian and maximum likelihood search procedures based on complex models of molecular evolution. In this work we describe minimal neural network architectures that can approximate classic phylogenetic distance functions and the properties required to learn distances under a variety of molecular evolutionary models. In contrast to model-based inference (and recently proposed model-free convolutional and transformer networks), these architectures have a small computational footprint and are scalable to large numbers of taxa and molecular characters. The learned distance functions generalize well and, given an appropriate training dataset, achieve results comparable to state-of-the art inference methods.
- Abstract(参考訳): 生物のサンプル間の系統的関係を推定することは、現代の生物学における根本的な問題である。
距離に基づく階層的クラスタリングアルゴリズムは、このタスクで早期に成功したが、これらはベイジアンによって取って代わられ、分子進化の複雑なモデルに基づく最大公理探索手順となった。
この研究では、古典的な系統的距離関数を近似できる最小限のニューラルネットワークアーキテクチャと、様々な分子進化モデルの下での距離を学習するために必要な特性について述べる。
モデルベース推論(および最近提案されたモデルフリー畳み込みおよびトランスフォーマーネットワーク)とは対照的に、これらのアーキテクチャは計算フットプリントが小さく、多くの分類や分子特性にスケーラブルである。
学習した距離関数はよく一般化され、適切なトレーニングデータセットが与えられると、最先端の推論手法に匹敵する結果が得られる。
関連論文リスト
- Discovering Physics-Informed Neural Networks Model for Solving Partial Differential Equations through Evolutionary Computation [5.8407437499182935]
本稿では,より高い近似精度と高速収束率を持つPINNモデルの探索を目的とした進化的計算手法を提案する。
実験では、ベイズ最適化、ランダム探索、進化を通じて探索される異なるモデルの性能を比較して、クライン=ゴルドン方程式、バーガー方程式、ラム方程式を解く。
論文 参考訳(メタデータ) (2024-05-18T07:32:02Z) - Learning From Simplicial Data Based on Random Walks and 1D Convolutions [6.629765271909503]
ランダムウォークと高速1D畳み込みに基づく単純な複雑なニューラルネットワーク学習アーキテクチャ。
実世界のデータセット上でSCRaWlを実証的に評価し、他の単純なニューラルネットワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-04-04T13:27:22Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
本稿では,系統学における2つの中核的問題に対処するための生成フローネットワーク(GFlowNets)の枠組みを紹介する。
GFlowNetsは複雑な構造をサンプリングするのに適しているため、木トポロジー上の多重モード後部分布を探索し、サンプリングするのに自然な選択である。
我々は, 実際のベンチマークデータセット上で, 様々な, 高品質な進化仮説を生成できることを実証した。
論文 参考訳(メタデータ) (2023-10-12T23:46:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - An Artificial Neural Network Functionalized by Evolution [2.0625936401496237]
フィードフォワードニューラルネットワークのテンソル計算と擬似ダーウィン機構を組み合わせたハイブリッドモデルを提案する。
これにより、戦略の解明、制御問題、パターン認識タスクに適したトポロジを見つけることができる。
特に、このモデルは初期の進化段階に適応したトポロジを提供し、ロボット工学、ビッグデータ、人工生命に応用できる「構造収束」を提供することができる。
論文 参考訳(メタデータ) (2022-05-16T14:49:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
データ駆動型細胞生物学のダイナミックモデルを用いて、目に見えない摂動に対する細胞の反応を予測することができる。
最近の研究は、明示的な相互作用項を持つ解釈可能なモデルの導出を実証した。
本研究は,このモデル推論手法の適用範囲を生物システムの多様性に拡張することを目的としている。
論文 参考訳(メタデータ) (2021-04-13T19:15:56Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - A multi-agent model for growing spiking neural networks [0.0]
このプロジェクトでは、学習メカニズムとして、スパイキングニューラルネットワークのニューロン間の接続を拡大するためのルールについて検討している。
シミュレーション環境での結果は、与えられたパラメータセットに対して、テストされた関数を再現するトポロジに到達可能であることを示した。
このプロジェクトはまた、モデルパラメーターに最適な値を得るために、遺伝的アルゴリズムのようなテクニックを使用するための扉を開く。
論文 参考訳(メタデータ) (2020-09-21T15:11:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。