論文の概要: Quantum-Classical Separation in Bounded-Resource Tasks Arising from Measurement Contextuality
- arxiv url: http://arxiv.org/abs/2512.02284v1
- Date: Mon, 01 Dec 2025 23:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.656271
- Title: Quantum-Classical Separation in Bounded-Resource Tasks Arising from Measurement Contextuality
- Title(参考訳): 測定条件から推定したバウンド・ソース・タスクの量子古典的分離
- Authors: Shashwat Kumar, Eliott Rosenberg, Alejandro Grajales Dau, Rodrigo Cortinas, Dmitri Maslov, Richard Oliver, Adam Zalcman, Matthew Neeley, Alice Pagano, Aaron Szasz, Ilya Drozdov, Zlatko Minev, Craig Gidney, Noureldin Yosri, Stijn J. de Graaf, Aniket Maiti, Dmitry Abanin, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Walt Askew, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Hector Bates, Andreas Bengtsson, Martin Bigdeli, Alexander Bilmes, Simon Bilodeau, Felix Borjans, Alexandre Bourassa, Jenna Bovaird, Dylan Bowers, Leon Brill, Peter Brooks, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Jamal Busnaina, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Silas Chen, Zijun Chen, Ben Chiaro, Liang-Ying Chih, Jahan Claes, Agnetta Y. Cleland, Bryan Cochrane, Matt Cockrell, Josh Cogan, Roberto Collins, Paul Conner, Harold Cook, William Courtney, Alexander L. Crook, Ben Curtin, Sayan Das, Laura De Lorenzo, Sean Demura, Agustin Di Paolo, Paul Donohoe, Andrew Dunsworth, Valerie Ehimhen, Alec Eickbusch, Aviv Moshe Elbag, Lior Ella, Mahmoud Elzouka, David Enriquez, Catherine Erickson, Vinicius S. Ferreira, Marcos Flores, Leslie Flores Burgos, Ebrahim Forati, Jeremiah Ford, Austin G. Fowler, Brooks Foxen, Masaya Fukami, Alan Wing Lun Fung, Lenny Fuste, Suhas Ganjam, Gonzalo Garcia, Christopher Garrick, Robert Gasca, Helge Gehring, Élie Genois, William Giang, Dar Gilboa, James E. Goeders, Ed Gonzales, Raja Gosula, Dietrich Graumann, Joel Grebel, Alex Greene, Jonathan A. Gross, Jose Guerrero, Tan Ha, Steve Habegger, Tanner Hadick, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Jeanne Hartshorn, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Jeremy Hilton, Hsin-Yuan Huang, Mike Hucka, Ashley Huff, William J. Huggins, Evan Jeffrey, Shaun Jevons, Zhang Jiang, Xiaoxuan Jin, Cody Jones, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Dvir Kafri, Hui Kang, Amir H. Karamlou, Ryan Kaufman, Kostyantyn Kechedzhi, Trupti Khaire, Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Can M. Knaut, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Ryuho Kudo, Ben Kueffler, Arun Kumar, Vladislav D. Kurilovich, Vitali Kutsko, David Landhuis, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev, Kim-Ming Lau, Loïck Le Guevel, Emma Leavell, Justin Ledford, Joy Lee, Kenny Lee, Brian J. Lester, Wendy Leung, Lily L Li, Wing Yan Li, Alexander T. Lill, William P. Livingston, Matthew T. Lloyd, Aditya Locharla, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Eric Mascot, Paul Masih Das, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Anthony Megrant, Kevin C. Miao, Reza Molavi, Sebastian Molina, Shirin Montazeri, Charles Neill, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, Logan Oas, William D. Oliver, Raymond Orosco, Kristoffer Ottosson, Sherman Peek, David Peterson, Alex Pizzuto, Rebecca Potter, Orion Pritchard, Michael Qian, Chris Quintana, Ganesh Ramachandran, Arpit Ranadive, Matthew J. Reagor, Rachel Resnick, David M. Rhodes, Daniel Riley, Gabrielle Roberts, Roberto Rodriguez, Emma Ropes, Emma Rosenfeld, Dario Rosenstock, Elizabeth Rossi, David A. Rower, Kannan Sankaragomathi, Murat Can Sarihan, Kevin J. Satzinger, Sebastian Schroeder, Henry F. Schurkus, Aria Shahingohar, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Volodymyr Sivak, Spencer Small, W. Clarke Smith, David A. Sobel, Barrett Spells, Sofia Springer, George Sterling, Jordan Suchard, Alexander Sztein, Madeline Taylor, Jothi Priyanka Thiruraman, Douglas Thor, Dogan Timucin, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Hao Tran, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Catherine Vollgraff Heidweiller, Meghan Voorhees, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Brayden Ware, James D. Watson, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Christopher J. Wood, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Elliot Young, Grayson Young, Ran Zhang, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Zhenjie Zou, Shruti Puri, Erik Lucero, Julian Kelly, Sergio Boixo, Yu Chen, Vadim Smelyanskiy, Hartmut Neven, Pedram Roushan, Michel Devoret,
- Abstract要約: 量子テクスチュアリティは、古典的限界を超えた成功確率で特定のタスクを実行できることを示す。
本研究は,文脈性に基づくアルゴリズムを用いて量子プロセッサをベンチマークする方法を提案する。
- 参考スコア(独自算出の注目度): 107.84586711462556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevailing view is that quantum phenomena can be harnessed to tackle certain problems beyond the reach of classical approaches. Quantifying this capability as a quantum-classical separation and demonstrating it on current quantum processors has remained elusive. Using a superconducting qubit processor, we show that quantum contextuality enables certain tasks to be performed with success probabilities beyond classical limits. With a few qubits, we illustrate quantum contextuality with the magic square game, as well as quantify it through a Kochen--Specker--Bell inequality violation. To examine many-body contextuality, we implement the N-player GHZ game and separately solve a 2D hidden linear function problem, exceeding classical success rate in both. Our work proposes novel ways to benchmark quantum processors using contextuality-based algorithms.
- Abstract(参考訳): 一般的な見解では、量子現象は古典的アプローチの範囲を超えて特定の問題に取り組むために利用することができる。
この能力を量子古典的分離として量子化し、現在の量子プロセッサ上でそれを実証することは、いまだ解明されていない。
超伝導量子ビットプロセッサを用いて、量子テクスチュアリティにより、古典的限界を超える確率で特定のタスクを実行できることを示す。
数量子ビットで、魔法の正方形ゲームと量子文脈性を図示し、コチェン-スペクター-ベルの不等式違反によってそれを定量化する。
我々は,N-player GHZゲームを実装し,古典的成功率を上回る2次元隠れ線形関数問題を個別に解く。
本研究は,文脈性に基づくアルゴリズムを用いて量子プロセッサをベンチマークする方法を提案する。
関連論文リスト
- Digital quantum simulation of many-body systems: Making the most of intermediate-scale, noisy quantum computers [51.56484100374058]
この論文は量子デバイス上の量子力学をシミュレートすることを中心にしている。
本稿では,量子力学における最も関連性の高い量子アルゴリズムの概要を紹介する。
近い将来に量子シミュレーションの恩恵を受けることができる量子力学における関連する問題を同定する。
論文 参考訳(メタデータ) (2025-08-29T10:37:19Z) - Classical Verification of Quantum Learning [42.362388367152256]
量子学習の古典的検証のための枠組みを開発する。
そこで我々は,新しい量子データアクセスモデルを提案し,これを"mixture-of-superpositions"量子例と呼ぶ。
この結果から,学習課題における量子データの潜在能力は無限ではないものの,古典的エージェントが活用できることが示唆された。
論文 参考訳(メタデータ) (2023-06-08T00:31:27Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Hunting for quantum-classical crossover in condensed matter problems [0.3799859284309834]
テンソルネットワークに基づく最先端の古典的アルゴリズムの体系的誤り/実行解析を提案する。
我々は、凝縮物質問題は、実用的な量子優位性の実証のための最初期のプラットフォームを提供すると論じる。
論文 参考訳(メタデータ) (2022-10-25T15:50:54Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Error Correction for Reliable Quantum Computing [0.0]
本稿では、縮退と呼ばれる量子パラダイムに特有な現象とそのスパース量子符号の性能への影響について研究する。
本稿では,様々なシナリオにおいて,スパース量子符号の特定の族の性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2022-02-17T11:26:52Z) - The Entanglement-Assisted Communication Capacity over Quantum
Trajectories [6.836162272841265]
量子チャネルの不明確な因果順序は、ボトルネックキャパシティに違反する可能性があることを示す。
任意の量子パウリチャネルに対する絡み合い支援型古典的および量子的通信のキャパシティ表現を導出する。
論文 参考訳(メタデータ) (2021-10-15T13:09:54Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
単一および多ビット系におけるLeggett-Garg-Bellの不等式違反を実験的に観察する。
本分析では, 量子プラットフォームの限界に注目し, 上記の相関関数は, 量子ビットの数や回路深さが大きくなるにつれて, 理論的予測から逸脱することを示した。
論文 参考訳(メタデータ) (2021-09-06T14:35:15Z) - Quantum entanglement recognition [0.0]
機械学習技術に基づく絡み合いを探索するための枠組みを定式化する。
得られた量子エンタングルメント認識タスクは正確であり、よく制御されたエラーを割り当てることができることを示す。
論文 参考訳(メタデータ) (2020-07-28T18:00:00Z) - Quantum supremacy in driven quantum many-body systems [0.0]
一般周期駆動型量子多体系において量子超越性が得られることを示す。
我々の提案は、大規模な量子プラットフォームが量子超越性を実証し、ベンチマークする方法を開く。
論文 参考訳(メタデータ) (2020-02-27T07:20:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。